Influence of experimental variables on the mechanical properties of steel fiber reinforced concrete (SFRC) in chloride degradation experiments: bibliographic review and statistical analysis

  • Oslery Becerra Tecnologico Nacional de Mexico https://orcid.org/0009-0003-8554-1438
  • Alejandro Meza TecNM/Institute Technology of Aguascalientes
  • Rogelio Salinas
Keywords: steel fiber reinforced concrete, degradation, chlorides, experimental variables, mechanical properties

Abstract

The objective of this research is to evaluate the effect of experimental variables in the study of chloride degradation of steel fiber reinforced concrete (SFRCs). The information was collected from different literary sources to later be treated through Taguchi's experimental design and regression analysis. The results show that the most influential factors in the degradation of SFRCs degraded by chloride are the load during degradation and the crack width, factors that statistically impact on residual resistance and maximum flexural load. However, others such as the water/cement ratio, fiber volume, chloride concentration and degradation time showed little influence on the mechanical response of the SFRCs.

Downloads

Download data is not yet available.

References

Abbas, S., Soliman, A. M., Nehdi, M. L. (2014), Mechanical Performance of reinforced Concrete and Steel Fiber-Reinforced Concrete Precast Tunnel Lining Segments: A Case Study, Aci Materials Journal, 501-510. DOI: https://doi.org/10.14359/51687101

Antony, F., Perry, D., Wang, C., Kumar, M. (2006), An application of Taguchi method of experimental design for new product design and development process, Operations and Quality Management Unit, Caledonian Business School, Glasgow Caledonian University, Glasgow, UK, http://dx.doi.org/10.1108/01445150610645611. DOI: https://doi.org/10.1108/01445150610645611

Balouch, S. U., Forth, J. P., Granju, J. L. (2010), Surface corrosion of steel ï¬bre reinforced concrete, Cement and Concrete Research, 40, 410–414, http://dx.doi.org/10.1016/j.cemconres.2009.10.001. DOI: https://doi.org/10.1016/j.cemconres.2009.10.001

Behbahani, H., Nematollahi, B. (2011), Steel Fiber Reinforced Concrete: A Review, ICSECM, Kandy-SriLanka.

Bernard, E. S. (2019), Durability of ï¬bre-reinforced shotcrete, TSE P/L, Penrith, Australia, http://dx.doi.org/10.1201/9780203023389.ch6. DOI: https://doi.org/10.1201/9780203023389.ch6

Berrocal, C. G., Fernandez, I., Lundgren, K., Löfgren, I. (2017), Corrosion-induced cracking and bond behaviour of corroded reinforcement bars in SFRC, Composites Part B, http://dx.doi.org/10.1016/j.compositesb.2017.01.020. DOI: https://doi.org/10.1016/j.compositesb.2017.01.020

Berrocal, C. G., Lundgren, K., Löfgren, I. (2015), Corrosion of Steel bars embedded in fibre reinforced concrete under chloride attack: State of the art, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2015.10.006. DOI: https://doi.org/10.1016/j.cemconres.2015.10.006

Berrocal, C. G., Lundgren, K., Löfgren, I. (2013), Influence of steel fibres on corrosion of reinforcement in concrete in chloride environments: a review, Fibre concrete, Prague, Czech Republic.

Blagojevic, A. (2016), The Influence of Cracks on the Durability and Service Life of Reinforced Concrete Structures in relation to Chloride-Induced Corrosion: A Look from a Diferent Perspective, Doctoral Thesis, Delft Univeristy of Technology: Delft, The Netherlands.

Bui, L. V. H, Jongvivatsakul, P., Limpaninlachat, P., Stitmannaithum, B., Nguyen, T. T., Nguyen, T. P. (2021), Simulation of shear behavior of corroded reinforced concrete beams flexurally repaired with steel fiber-reinforced concrete, Structures, 34, 1545–1559. http://dx.doi.org/10.1016/j.istruc.2021.08.087. DOI: https://doi.org/10.1016/j.istruc.2021.08.087

Carrillo, J., Cárdenas, Pulido, J., Aperador, W. (2017), Propiedades mecánicas a flexión del concreto reforzado con fibras de acero bajo ambientes corrosivos, Revista Ingeniería de Construcción, 32, 59-72. DOI: https://doi.org/10.4067/S0718-50732017000200005

Chen, H., Zhou, X., Li, Q., He, R., Huang, X. (2021), Dynamic Compressive Strength Tests of Corroded SFRC Exposed to Drying–Wetting Cycles with a 37 mm Diameter SHPB, Materials, 14, 2267, http://dx.doi.org/10.3390/ma14092267. DOI: https://doi.org/10.3390/ma14092267

Doo-Yeol, Y., Shin, W., Chun, B., Banthia, N. (2021), Assessment of steel ï¬ber corrosion in self-healed ultra-high-performance ï¬ber-reinforced concrete and its effect on tensile performance, Cement and Concrete Research, 133, 106091, http://dx.doi.org/10.1016/j.cemconres.2020.106091. DOI: https://doi.org/10.1016/j.cemconres.2020.106091

Ferreira, M. P., Oliveira, M. H., Lima, Neto A. F., Tapajós, L. S., Nascimento, A. J. C, Freire, M. C. (2018), Influencia del anclaje en la resistencia a la flexión de vigas reforzadas con mantas de PRFC, Revista ALCONPAT, 9 (1), 30 – 47, http://dx.doi.org/10.21041/ra.v9i1.269. DOI: https://doi.org/10.21041/ra.v9i1.269

Granju, J. L., Balouch, S. U. (2005), Corrosion of steel fibre reinforced concrete from the cracks, Cement and Concrete Research, 572– 577, http://dx.doi.org/10.1016/j.cemconres.2004.06.032. DOI: https://doi.org/10.1016/j.cemconres.2004.06.032

Horszczaruk, E. K. (2009), Hydro-abrasive erosion of high performance ï¬ber-reinforced concrete, Wear, 267, 110–115, http://dx.doi.org/10.1016/j.wear.2008.11.010. DOI: https://doi.org/10.1016/j.wear.2008.11.010

Hou, L., Peng, Y., Xu, R., Zhang, X., Huang, T., Chen, D. (2021), Corrosion behavior and flexural performance of reinforced SFRC beams under sustained loading and chloride attack, 242, 112553. http://dx.doi.org/10.1016/j.engstruct.2021.112553. DOI: https://doi.org/10.1016/j.engstruct.2021.112553

Juárez-Alvarado, C. A., González López, J. R., Mendoza-Rangel, J. M., Zaldivar Cadena, A. A. (2017), Compuestos cementantes fibroreforzados de bajo impacto ambiental comportamiento mecánico, Revista ALCONPAT, 7 (2), 135-147, http://dx.doi.org/10.21041/ra.v7i2.189. DOI: https://doi.org/10.21041/ra.v7i2.189

Kaur, G., Pal Singh, S. (2012), Flexural performance of fibrous concrete with cement additions, Construction Materials, 167, 14-25, http://dx.doi.org/10.1680/coma.12.00008. DOI: https://doi.org/10.1680/coma.12.00008

Kuehl, R. O. (2000), Diseño de experimentos. Principios estadísticos de diseño y análisis de investigación, Arizona.

Li, H., Li B., Jin, R., Li, S., Yu, J. G. (2018), Effects of sustained loading and corrosion on the performance of reinforced concrete beams, Construction and Building Materials, 169, 179–187. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.199

Marcos-Meson, V., Fischer, G., Edvardsen, C., Skovhus, T. L., Michel, A. (2019), Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack – A literature review, Construction and Building Materials, 200, 490–501, https://doi.org/10.1016/j.conbuildmat.2018.12.051. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.051

Marcos-Meson, V., Fischer, G., Solgaard, A., Edvardsen, C., Michel, A. (2021), Mechanical Performance of Steel Fibre Reinforced Concrete Exposed to Wet–Dry Cycles of Chlorides and Carbon Dioxide, Materials, 14, 2642, http://dx.doi.org/10.3390/ma14102642. DOI: https://doi.org/10.3390/ma14102642

Marcos-Meson, V., Geiker, M., Fischer, G., Solgaard, A., Jakobsen, U. H., Edvardsen, C., Skovhus, T. L., Michel, A., Danner, T. (2020), Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide – Multiscale deterioration phenomena, Cement and Concrete Research, 135, 106120, https://doi.org/10.1016/j.cemconres.2020.106120. DOI: https://doi.org/10.1016/j.cemconres.2020.106120

Meza, A., Shaikh, F. U. A. (2020), Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement, Constr. Build. Mater, 265, 120331, http://dx.doi.org/10.1016/j.conbuildmat.2020.120331. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120331

Meza, A., Pujadas, P., Meza, L. M., Pardo-Bosch, F., López-Carreño, R. D. (2021), Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study, Materials, 14-240, http://dx.doi.org/10.3390/ma14020240. DOI: https://doi.org/10.3390/ma14020240

Meza, A., Siddique, S. (2019), Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber, Construction and Building Materials, 213, 286–291, http://dx.doi.org/10.1016/j.conbuildmat.2019.04.081. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.081

Michel, A., Solgaard, A. O. S., Pease, B. J., Geiker, M. R., Stang, H., Olesen, J. F. (2013), Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and ï¬bre reinforced concrete, Corrosion Science, 77, 308–321, http://dx.doi.org/10.1016/j.corsci.2013.08.019. DOI: https://doi.org/10.1016/j.corsci.2013.08.019

Nguyen, W., Duncan, J. F., Jen, G., Ostertag, C. P. (2018), Influence of matrix cracking and hybrid ï¬ber reinforcement on the corrosion initiation and propagation behaviors of reinforced concrete, Corrosion Science, http://dx.doi.org/10.1016/j.corsci.2018.06.004. DOI: https://doi.org/10.1016/j.corsci.2018.06.004

Paul, S. C., Van Zijl, G. P., Branko Å avija, B. (2020), Efect of Fibers on Durability of Concrete: A Practical Review, Materials, 13, 4562, http://dx.doi.org/10.3390/ma13204562www. DOI: https://doi.org/10.3390/ma13204562

Salazar-Jiménez, J. A. (2015), Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica), Tecnología en Marcha, 28, 127-136. DOI: https://doi.org/10.18845/tm.v28i3.2417

Simões, Y. S., Santo, C. F. R. (2019), Contribución de las vigas de concreto armado degradadas por la acción del fuego: Análisis comparativo entre el refuerzo estructural con fibras de carbono y láminas metálicas, Revista ALCONPAT, 9 (1), 48 – 64, http://dx.doi.org/10.21041/ra.v9i1.259. DOI: https://doi.org/10.21041/ra.v9i1.259

Tang, K., Wilkinson, S. (2020), Corrosion resistance of electriï¬ed railway tunnels made of steel ï¬ber reinforced concrete, Construction and Building Materials, 230, 117006, http://dx.doi.org/10.1016/j.conbuildmat.2019.117006. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117006

Taqi, F. Y., Mashrei, M. A., Oleiwi, H. M. (2021), Experimental study on the effect of corrosion on shear strength of fibre-reinforced concrete beams, Structures, 33, 2317-2333, http://dx.doi.org/10.1016/j.istruc.2021.06.006. DOI: https://doi.org/10.1016/j.istruc.2021.06.006

Zhang, P., Kang, L., Wang, J., Guo, J., Hu, S., Ling, Y. (2020), Mechanical Properties and Explosive Spalling Behavior of Steel-Fiber-Reinforced Concrete Exposed to High Temperature—A Review, Applied Sciences, 10, 2324, http://dx.doi.org/10.3390/app10072324. DOI: https://doi.org/10.3390/app10072324

Published
2023-04-25
How to Cite
Becerra, O., Meza, A., & Salinas, R. (2023). Influence of experimental variables on the mechanical properties of steel fiber reinforced concrete (SFRC) in chloride degradation experiments: bibliographic review and statistical analysis. Revista ALCONPAT, 13(2), 143 - 157. https://doi.org/10.21041/ra.v13i2.641