Influence of experimental variables on the mechanical properties of steel fiber reinforced concrete (SFRC) in chloride degradation experiments: bibliographic review and statistical analysis
Abstract
The objective of this research is to evaluate the effect of experimental variables in the study of chloride degradation of steel fiber reinforced concrete (SFRCs). The information was collected from different literary sources to later be treated through Taguchi's experimental design and regression analysis. The results show that the most influential factors in the degradation of SFRCs degraded by chloride are the load during degradation and the crack width, factors that statistically impact on residual resistance and maximum flexural load. However, others such as the water/cement ratio, fiber volume, chloride concentration and degradation time showed little influence on the mechanical response of the SFRCs.
Downloads
References
Abbas, S., Soliman, A. M., Nehdi, M. L. (2014), Mechanical Performance of reinforced Concrete and Steel Fiber-Reinforced Concrete Precast Tunnel Lining Segments: A Case Study, Aci Materials Journal, 501-510. DOI: https://doi.org/10.14359/51687101
Antony, F., Perry, D., Wang, C., Kumar, M. (2006), An application of Taguchi method of experimental design for new product design and development process, Operations and Quality Management Unit, Caledonian Business School, Glasgow Caledonian University, Glasgow, UK, http://dx.doi.org/10.1108/01445150610645611. DOI: https://doi.org/10.1108/01445150610645611
Balouch, S. U., Forth, J. P., Granju, J. L. (2010), Surface corrosion of steel ï¬bre reinforced concrete, Cement and Concrete Research, 40, 410–414, http://dx.doi.org/10.1016/j.cemconres.2009.10.001. DOI: https://doi.org/10.1016/j.cemconres.2009.10.001
Behbahani, H., Nematollahi, B. (2011), Steel Fiber Reinforced Concrete: A Review, ICSECM, Kandy-SriLanka.
Bernard, E. S. (2019), Durability of ï¬bre-reinforced shotcrete, TSE P/L, Penrith, Australia, http://dx.doi.org/10.1201/9780203023389.ch6. DOI: https://doi.org/10.1201/9780203023389.ch6
Berrocal, C. G., Fernandez, I., Lundgren, K., Löfgren, I. (2017), Corrosion-induced cracking and bond behaviour of corroded reinforcement bars in SFRC, Composites Part B, http://dx.doi.org/10.1016/j.compositesb.2017.01.020. DOI: https://doi.org/10.1016/j.compositesb.2017.01.020
Berrocal, C. G., Lundgren, K., Löfgren, I. (2015), Corrosion of Steel bars embedded in fibre reinforced concrete under chloride attack: State of the art, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2015.10.006. DOI: https://doi.org/10.1016/j.cemconres.2015.10.006
Berrocal, C. G., Lundgren, K., Löfgren, I. (2013), Influence of steel fibres on corrosion of reinforcement in concrete in chloride environments: a review, Fibre concrete, Prague, Czech Republic.
Blagojevic, A. (2016), The Influence of Cracks on the Durability and Service Life of Reinforced Concrete Structures in relation to Chloride-Induced Corrosion: A Look from a Diferent Perspective, Doctoral Thesis, Delft Univeristy of Technology: Delft, The Netherlands.
Bui, L. V. H, Jongvivatsakul, P., Limpaninlachat, P., Stitmannaithum, B., Nguyen, T. T., Nguyen, T. P. (2021), Simulation of shear behavior of corroded reinforced concrete beams flexurally repaired with steel fiber-reinforced concrete, Structures, 34, 1545–1559. http://dx.doi.org/10.1016/j.istruc.2021.08.087. DOI: https://doi.org/10.1016/j.istruc.2021.08.087
Carrillo, J., Cárdenas, Pulido, J., Aperador, W. (2017), Propiedades mecánicas a flexión del concreto reforzado con fibras de acero bajo ambientes corrosivos, Revista IngenierÃa de Construcción, 32, 59-72. DOI: https://doi.org/10.4067/S0718-50732017000200005
Chen, H., Zhou, X., Li, Q., He, R., Huang, X. (2021), Dynamic Compressive Strength Tests of Corroded SFRC Exposed to Drying–Wetting Cycles with a 37 mm Diameter SHPB, Materials, 14, 2267, http://dx.doi.org/10.3390/ma14092267. DOI: https://doi.org/10.3390/ma14092267
Doo-Yeol, Y., Shin, W., Chun, B., Banthia, N. (2021), Assessment of steel ï¬ber corrosion in self-healed ultra-high-performance ï¬ber-reinforced concrete and its effect on tensile performance, Cement and Concrete Research, 133, 106091, http://dx.doi.org/10.1016/j.cemconres.2020.106091. DOI: https://doi.org/10.1016/j.cemconres.2020.106091
Ferreira, M. P., Oliveira, M. H., Lima, Neto A. F., Tapajós, L. S., Nascimento, A. J. C, Freire, M. C. (2018), Influencia del anclaje en la resistencia a la flexión de vigas reforzadas con mantas de PRFC, Revista ALCONPAT, 9 (1), 30 – 47, http://dx.doi.org/10.21041/ra.v9i1.269. DOI: https://doi.org/10.21041/ra.v9i1.269
Granju, J. L., Balouch, S. U. (2005), Corrosion of steel fibre reinforced concrete from the cracks, Cement and Concrete Research, 572– 577, http://dx.doi.org/10.1016/j.cemconres.2004.06.032. DOI: https://doi.org/10.1016/j.cemconres.2004.06.032
Horszczaruk, E. K. (2009), Hydro-abrasive erosion of high performance ï¬ber-reinforced concrete, Wear, 267, 110–115, http://dx.doi.org/10.1016/j.wear.2008.11.010. DOI: https://doi.org/10.1016/j.wear.2008.11.010
Hou, L., Peng, Y., Xu, R., Zhang, X., Huang, T., Chen, D. (2021), Corrosion behavior and flexural performance of reinforced SFRC beams under sustained loading and chloride attack, 242, 112553. http://dx.doi.org/10.1016/j.engstruct.2021.112553. DOI: https://doi.org/10.1016/j.engstruct.2021.112553
Juárez-Alvarado, C. A., González López, J. R., Mendoza-Rangel, J. M., Zaldivar Cadena, A. A. (2017), Compuestos cementantes fibroreforzados de bajo impacto ambiental comportamiento mecánico, Revista ALCONPAT, 7 (2), 135-147, http://dx.doi.org/10.21041/ra.v7i2.189. DOI: https://doi.org/10.21041/ra.v7i2.189
Kaur, G., Pal Singh, S. (2012), Flexural performance of fibrous concrete with cement additions, Construction Materials, 167, 14-25, http://dx.doi.org/10.1680/coma.12.00008. DOI: https://doi.org/10.1680/coma.12.00008
Kuehl, R. O. (2000), Diseño de experimentos. Principios estadÃsticos de diseño y análisis de investigación, Arizona.
Li, H., Li B., Jin, R., Li, S., Yu, J. G. (2018), Effects of sustained loading and corrosion on the performance of reinforced concrete beams, Construction and Building Materials, 169, 179–187. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.199
Marcos-Meson, V., Fischer, G., Edvardsen, C., Skovhus, T. L., Michel, A. (2019), Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack – A literature review, Construction and Building Materials, 200, 490–501, https://doi.org/10.1016/j.conbuildmat.2018.12.051. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.051
Marcos-Meson, V., Fischer, G., Solgaard, A., Edvardsen, C., Michel, A. (2021), Mechanical Performance of Steel Fibre Reinforced Concrete Exposed to Wet–Dry Cycles of Chlorides and Carbon Dioxide, Materials, 14, 2642, http://dx.doi.org/10.3390/ma14102642. DOI: https://doi.org/10.3390/ma14102642
Marcos-Meson, V., Geiker, M., Fischer, G., Solgaard, A., Jakobsen, U. H., Edvardsen, C., Skovhus, T. L., Michel, A., Danner, T. (2020), Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide – Multiscale deterioration phenomena, Cement and Concrete Research, 135, 106120, https://doi.org/10.1016/j.cemconres.2020.106120. DOI: https://doi.org/10.1016/j.cemconres.2020.106120
Meza, A., Shaikh, F. U. A. (2020), Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement, Constr. Build. Mater, 265, 120331, http://dx.doi.org/10.1016/j.conbuildmat.2020.120331. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120331
Meza, A., Pujadas, P., Meza, L. M., Pardo-Bosch, F., López-Carreño, R. D. (2021), Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study, Materials, 14-240, http://dx.doi.org/10.3390/ma14020240. DOI: https://doi.org/10.3390/ma14020240
Meza, A., Siddique, S. (2019), Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber, Construction and Building Materials, 213, 286–291, http://dx.doi.org/10.1016/j.conbuildmat.2019.04.081. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.081
Michel, A., Solgaard, A. O. S., Pease, B. J., Geiker, M. R., Stang, H., Olesen, J. F. (2013), Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and ï¬bre reinforced concrete, Corrosion Science, 77, 308–321, http://dx.doi.org/10.1016/j.corsci.2013.08.019. DOI: https://doi.org/10.1016/j.corsci.2013.08.019
Nguyen, W., Duncan, J. F., Jen, G., Ostertag, C. P. (2018), Influence of matrix cracking and hybrid ï¬ber reinforcement on the corrosion initiation and propagation behaviors of reinforced concrete, Corrosion Science, http://dx.doi.org/10.1016/j.corsci.2018.06.004. DOI: https://doi.org/10.1016/j.corsci.2018.06.004
Paul, S. C., Van Zijl, G. P., Branko Å avija, B. (2020), Efect of Fibers on Durability of Concrete: A Practical Review, Materials, 13, 4562, http://dx.doi.org/10.3390/ma13204562www. DOI: https://doi.org/10.3390/ma13204562
Salazar-Jiménez, J. A. (2015), Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica), TecnologÃa en Marcha, 28, 127-136. DOI: https://doi.org/10.18845/tm.v28i3.2417
Simões, Y. S., Santo, C. F. R. (2019), Contribución de las vigas de concreto armado degradadas por la acción del fuego: Análisis comparativo entre el refuerzo estructural con fibras de carbono y láminas metálicas, Revista ALCONPAT, 9 (1), 48 – 64, http://dx.doi.org/10.21041/ra.v9i1.259. DOI: https://doi.org/10.21041/ra.v9i1.259
Tang, K., Wilkinson, S. (2020), Corrosion resistance of electriï¬ed railway tunnels made of steel ï¬ber reinforced concrete, Construction and Building Materials, 230, 117006, http://dx.doi.org/10.1016/j.conbuildmat.2019.117006. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117006
Taqi, F. Y., Mashrei, M. A., Oleiwi, H. M. (2021), Experimental study on the effect of corrosion on shear strength of fibre-reinforced concrete beams, Structures, 33, 2317-2333, http://dx.doi.org/10.1016/j.istruc.2021.06.006. DOI: https://doi.org/10.1016/j.istruc.2021.06.006
Zhang, P., Kang, L., Wang, J., Guo, J., Hu, S., Ling, Y. (2020), Mechanical Properties and Explosive Spalling Behavior of Steel-Fiber-Reinforced Concrete Exposed to High Temperature—A Review, Applied Sciences, 10, 2324, http://dx.doi.org/10.3390/app10072324. DOI: https://doi.org/10.3390/app10072324
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.