Use of nano-SiO2 as a preventive maintenance surface treatment in concrete aged by carbonation

  • Laura Vaca Arciga UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL
  • Dulce Cruz Moreno UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL
  • Gerardo FaJardo San Miguel UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓNFACULTAD DE INGENIERÍA CIVIL http://orcid.org/0000-0002-6630-9276
  • Ricardo Orozco Cruz UNIVERSIDAD VERACRUZANA - INSTITUTO DE INGENIERÍA
  • Francisco Tienda Resendez UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN - FACULTAD DE INGENIERÍA CIVIL
Keywords: surface treatment; prevention; Nano SiO2; concrete; carbonation

Abstract

This study aims to evaluate the use of silicon base (NS) and functionalized (NF) nanoparticles as emerging preventive surface treatment (ST) in reinforced concrete specimens. The specimens were fabricated with a water/cement (w/c) of 0.65 and subjected to a previous aging period through exposure to CO2. Subsequently, two different variants of the treatment were applied by spraying (using a 0.1% dispersion of nanoparticles in water) and then re-applied to carbonation. The carbonation depth and contact angle results indicate that there is an influence between the degree of aging and the efficiency of each treatment.

Downloads

Download data is not yet available.

Author Biography

Gerardo FaJardo San Miguel, UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓNFACULTAD DE INGENIERÍA CIVIL

PROFESOR DE TIEMPO COMPLETO TITULAR B DE LA UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

 

References

Aguirre, A. M. and Mejía de Gutiérrez, R. (2013) “Durabilidad del hormigón armado expuesto a condiciones agresivasâ€, Materiales de Construcción, 63(309), pp. 7–38. doi: https://doi.org/10.3989/mc.2013.00313.

Alhozaimy, A., Hussain, R. R., Al-Zaid, R., Al-Negheimish, A. (2012) “Investigation of severe corrosion observed at intersection points of steel rebar mesh in reinforced concrete constructionâ€, Construction and Building Materials. 37, pp. 67–81. doi: https://doi.org/10.1016/j.conbuildmat.2012.07.011.

Angst, U. M. (2018) “Challenges and opportunities in corrosion of steel in concreteâ€, Materials and Structures. Springer Netherlands, 51(4). doi: https://doi.org/10.1617/s11527-017-1131-6.

Beushausen, H. and Bester, N. (2016) “The influence of curing on restrained shrinkage cracking of bonded concrete overlaysâ€, Cement and Concrete Research. Elsevier Ltd, 87, pp. 87–96. doi: https://doi.org/10.1016/j.cemconres.2016.05.007.

Christodoulou, C., Goodier, C. I., Austin, S. A., Webb, J., Glass, G. K. (2013) “Long-term performance of surface impregnation of reinforced concrete structures with silaneâ€, Construction and Building Materials. Elsevier Ltd, 48, pp. 708–716. doi: https://doi.org/10.1016/j.conbuildmat.2013.07.038.

Creasey, R., Andrews, J. P., Ekolu, S. O., Kruger, D. (2017) “Long-term 20-year performance of surface coating repairs applied to façades of reinforced concrete buildingsâ€, Case Studies in Construction Materials, 7, pp. 348–360. doi: https://doi.org/10.1016/j.cscm.2017.11.001 .

Cruz Moreno, D. M., Fajardo San Miguel, G. D. J., Flores Vivián, I., Cruz López, A., & Valdez Tamez, P. L. (2017). Tratamiento superficial con nanopartículas base silicio inducido durante el curado: Efecto en la durabilidad de materiales base cemento portland. Revista ALCONPAT, 7(3), 274 - 285. https://doi.org/10.21041/ra.v7i3.239

Cruz-Moreno, D. M. A. (2015) Mejoramiento del efecto barrera en materiales endurecidos de cemento portland mediante una aplicación innovadora de nano-partículas de silicio. Tesis de Maestría en Ciencias con Orientación en Materiales de Construcción, Universidad Autónoma de Nuevo León. Disponible en: http://eprints.uanl.mx/id/eprint/4554.

Cruz-Moreno, D. M. A. (2019) Superficies multifuncionales en materiales de construcción base cemento portland obtenidas durante el curado con nanopartículas funcionalizadas, Tesis de Doctorado en Ingeniería con Orientación en Materiales de Construcción. Universidad Autónoma de Nuevo León. Disponible en: http://eprints.uanl.mx/id/eprint/18517.

Fajardo, G., Cruz-Lópeza, A., Cruz-Moreno, D., Valdeza, P., Torres, G., Zanella, R. (2015), “Innovative application of silicon nanoparticles (SN): Improvement of the barrier effect in hardened Portland cement-based materialsâ€, Construction and Building Materials. Elsevier Ltd, 76, pp. 158–167. doi: https://doi.org/10.1016/j.conbuildmat.2014.11.054.

Franzoni, E., Pigino, B. and Pistolesi, C. (2013) “Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatmentsâ€, Cement and Concrete Composites, 44, pp. 69–76. doi: https://doi.org/10.1016/j.cemconcomp.2013.05.008.

Hernández-Castañeda, O. and Mendoza-Escobedo, C. J. (2006) ‘Durabilidad e infraestructura: retos e impacto socioeconómico’, Ingeniería Investigación y Tecnología, 7(1), pp. 57–70. doi: http://dx.doi.org/10.22201/fi.25940732e.2006.07n1.005.

Hou, P., Li, R., Li, Q., Lu, N., Wang, K., Liu, M., Cheng, X. and Shah, S. (2018) ‘Novel superhydrophobic cement-based materials achieved by construction of hierarchical surface structure with FAS/SiO2 hybrid nanocomposites’, Engineered Science Materials & Manufacturing. doi: https://doi.org/10.30919/esmm5f125.

Ibrahim, M., Al-Gahtani, A. S., Maslehuddin, M. and Dakhil, F. H. (1999), “Use of surface treatment materials to improve concrete durabilityâ€, Journal of Materials in Civil Engineering, Vol. 11, Issue 1. doi: https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(36)

Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A. R. (2012), “Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticlesâ€, Materials and Design. Elsevier Ltd, 34, pp. 389–400. doi: https://doi.org/10.1016/j.matdes.2011.08.037.

Kupwade-patil, K. and Cardenas, H. E. (2013), “Electrokinetic nanoparticle treatment for corrosion remediation on simulated reinforced bridge deckâ€, Journal of Nanoparticle Research, 15 (1952). doi: https://doi.org/10.1007/s11051-013-1952-3.

Pan, X., Shi, Z., Shi, C., Ling, T.-C. and Li, N. (2017a) ‘A review on concrete surface treatment Part I: Types and mechanisms’, Construction and Building Materials. Elsevier Ltd, 132, pp. 578–590. doi: https://doi.org/10.1016/j.conbuildmat.2016.12.025.

Pan, X., Shi, Z., Shi, C., Ling, T.-C. and Li, N. (2017b) ‘A review on surface treatment for concrete – Part 2: Performance’, Construction and Building Materials. Elsevier Ltd, 133, pp. 81–90. doi: https://doi.org/10.1016/j.conbuildmat.2016.11.128.

Pigino, B., Leemann, A., Franzonia, E. and Lura, P. (2012) ‘Ethyl silicate for surface treatment of concrete – Part II: Characteristics and performance’, Cement and Concrete Composites. Elsevier Ltd, 34(3), pp. 313–321. doi: https://doi.org/10.1016/j.cemconcomp.2011.11.021.

Polder, R. B., Peelen, W. H. A. and Courage, W. M. G. (2012) ‘Non-traditional assessment and maintenance methods for aging concrete structures - Technical and non-technical issues’, Materials and Corrosion, 63(12), pp. 1147–1153. doi: https://doi.org/10.1002/maco.201206725.

Shen, L., Jiang, H., Wang, T., Chen, K. and Zhang, H. (2019) ‘Progress in Organic Coatings Performance of silane -based surface treatments for protecting degraded historic concrete’, Progress in Organic Coatings. Elsevier, 129, pp. 209–216. doi: https://doi.org/10.1016/j.porgcoat.2019.01.016.

Sobolev, K., Flores, I., Hermosillo, R. and Torres-Martínez, L. M (2008), Nanomaterials and Nanotechnology for High-Performance Cement Composites, Symposium Paper, International Concrete Abstracts Portal, American Concrete Institute: ACI Special Publication, 254, pp. 93–120. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.2354&rep=rep1&type=pdf.

Vivar Mora, L., Naik, S., Paul, S., Dawson, R., Neville, A. and Barker, R. (2017) Influence of silica nanoparticles on corrosion resistance of sol-gel based coatings on mild steel, Surface and Coatings Technology. Elsevier B.V., 324, pp. 368–375. doi: https://doi.org/10.1016/j.surfcoat.2017.05.063

Zhi, J.-H. Zhang, L.-Z., Yan, Y. and Zhu, J. (2017), Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies, Applied Surface Science. Elsevier B.V., 392, pp. 286–296. doi: https://doi.org/10.1016/j.apsusc.2016.09.049.

Published
2020-09-01