Time variability analysis for damage detection in flexible pavement using infrared thermography

  • Marina Pacara Copa Universidad Mayor de San Simón, Cochabamba
  • Joaquin Humberto Aquino Rocha Universidad Privada del Valle, Cochabamba http://orcid.org/0000-0002-3383-6379
  • Jahel Sarvia Ledezma Perez Universidad Mayor de San Simón, Cochabamba
Keywords: Infrared thermography, Flexible pavement, Inspection

Abstract

This document discusses the time range to optimize and understand infrared thermography results when used on damage detection for flexible pavement. A monitoring activity was performed during 14 continuous hours (5:00 a.m. to 7:00 p.m.) for four study areas in a centrally located avenue in Cochabamba City, Bolivia. This activity evidenced an effective time range to take thermographic images from 11:00 a.m. to 4:00 p.m. Damage visualization by differential colorimetry in thermograms at different times was also verified. This test enables locating areas where a detailed inspection may be performed. As a limitation, its sensibility to changes under environmental conditions is evident.

Downloads

Download data is not yet available.

Author Biography

Joaquin Humberto Aquino Rocha, Universidad Privada del Valle, Cochabamba

http://lattes.cnpq.br/1787659871780888

References

ABC – Administradora Boliviana de Carreteras (2011), “Manual de diseño de conservación vialâ€. ABC, La Paz, Bolivia, p. 365. Last access on May 30, 2019. Available at: http://www.abc.gob.bo/wp-content/uploads/2018/09/manual_de_diseno_de_conservacion_vial_abc.pdf

Bagavathiappan, S., Lahiri, B., Saravanan, T., Philip, J. (2013), Infrared thermography for condition monitoring - A review. Infrared Physics & Technology. 60(1):35-55. Doi: https://doi.org/10.1016/j.infrared.2013.03.006

Bolivia (2006a), Ley N°3507, 27 de octubre de 2006. Último acceso 30 de mayo de 2019. Disponible en: http://www.abc.gob.bo/wp-content/uploads/2018/07/Ley_3507.pdf

Bolivia (2006b), Decreto Supremo N°28946, 25 de noviembre de 2006. Last access on May 30, 2019. Available at: http://www.abc.gob.bo/wp-content/uploads/2018/07/Decreto_Supremo_N%C2%BA_28946.pdf

Cengel, Y. (2003), “Heat Transfer, a practical approachâ€. McGraw-Hill, Segunda Edición, p. 932.

Farrag, S., Yehia, S., Qaddoumi, N. (2016). Investigation of Mix-Variation Effect on Defect- Detection Ability Using Infrared Thermography as a Nondestructive Evaluation Technique. Journal of Bridge Engineering, 21(3):1-15. Doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000779

Fernandes, F. M., Pais, J. C. (2017), Laboratory observation of cracks in road pavements with GPR. Construction and Building Materials, 154:1130-1138. Doi: https://doi.org/10.1016/j.conbuildmat.2017.08.022

FLIR (2016), “Smartphone S60 de Cat® Manual del usuarioâ€. Last access on May 28, 2019. Available at: https://www.catphones.com/download/User-Manuals/S60-Smartphone/S60-Manual-del-usario-Espa%C3%B1ol.pdf

Garrido, I., Lagüela, S., Arias, P. (2018), Infrared Thermography’s Application to Infrastructure Inspections. Infrastructures, 3(3):1-19. Doi: https://doi.org/10.3390/infrastructures3030035

Golrokh, A. J., Lu, Y. (2019), An experimental study of the effects of climate conditions on thermography and pavement assessment. International Journal of Pavement Engineering, 1-12. Doi: https://doi.org/10.1080/10298436.2019.1656809

Janků, M., Cikrle, P., Grošek, J., Anton, O., Stryk, J. (2019), Comparison of infrared thermography, ground-penetrating radar and ultrasonic pulse echo for detecting delaminations in concrete bridges. Construction and Building Materials, 225:1098–1111. Doi: https://doi.org/10.1016/j.conbuildmat.2019.07.320

Khamzin, A. K., Varnavina, A. V., Torgashov, E. V., Anderson, N. L., Sneed, L. H. (2017), Utilization of air-launched ground penetrating radar (GPR) for pavement condition assessment. Construction and Building Materials, 141:130-139. Doi: https://doi.org/10.1016/j.conbuildmat.2017.02.105

Lin, S., Ashlock, J., Williams, R. C., Lee, H. D., Wang, Y. (2018), Evaluation of three nondestructive testing techniques for quality assessment of asphalt pavements. Nondestructive Testing and Evaluation, 33(4):361-375. Doi: https://doi.org/10.1080/10589759.2018.1484921

Los Tiempos (2016), “Caos de tráfico vehicular en la ciudad de Cochabambaâ€. Last access on May 30, 2019. Available at: http://www.lostiempos.com/actualidad/opinion/20161221/columna/caos-trafico-vehicular-ciudad-cochabamba

Los Tiempos (2016), “Población protesta por el mal estado de las calles en Cochabambaâ€. Last access on June 25, 2019. Available at: https://www.lostiempos.com/actualidad/local/20160420/poblacion-protesta-mal-estado-calles-cochabamba

Los Tiempos (2019), “Cochabamba: ciudad de baches y eternas fallas en el asfaltoâ€. Último acceso 25 de junio de 2020. Disponible en: https://www.lostiempos.com/especial-multimedia/20190408/cochabamba-ciudad-baches-eternas-fallas-asfalto

Lovera, G. C. (2017), “La política caminera del modelo de capitalismo de Estado de 1952 – 1985â€, Tesis de licenciatura, Universidad Mayor de San Andrés, p. 126.

Muñoz-Potosi, A., Pencue-Fierro, L., León-Téllez, J. (2009), Análisis Termográfico Para La Determinación De Puntos Críticos En Equipos Mecánicos Y Eléctricos. Bistua: Revista de la Facultad de Ciencias Básicas, 7(1):1-4. Available at: http://www.redalyc.org/articulo.oa?id=90312171013

Opinión (2018), Alcaldía inicia reparación de baches en las calles. Último acceso 25 de junio de 2020. Disponible en: https://www.opinion.com.bo/articulo/cochabamba/alcald-iacute-inicia-reparaci-oacute-n-baches-calles/20180220000500605048.html

Rehman, S., Ibrahim, Z., Memon, S. A., Jameel, M. (2016), Nondestructive test methods for concrete bridges: A review. Construction and Building Materials. 107(15):58-86. Doi: https://doi.org/10.1016/j.conbuildmat.2015.12.011

Revillas, S. (2011), “Guía de la termografía infrarroja, aplicaciones en ahorro y eficiencia energéticaâ€. eBuilding, Madrid, España, p. 189. Available at: https://www.fenercom.com/pdf/publicaciones/Guia-de-la-Termografia-Infrarroja-fenercom-2011.pdf

Rocha, J., Póvoas, Y. (2017), Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: A review of the state of the art. Revista ALCONPAT, 7(3):200-214. Doi: https://dx.doi.org/10.21041/ra.v7i3.223

Rocha, J., Póvoas, Y., Silva, M., Monteiro, E. (2017), Análise da Profundidade de Fissuras em Concreto com Termografia Infravermelha. Revista de Engenharia e Pesquisa Aplicada, 2(3): 58-65. Doi: https://doi.org/10.25286/repa.v2i3.688

Solla, M., Lagüela, S., González-Jorge, H., Arias, P. (2014), Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods: Preliminary findings. Ndt & E International, 62:55-65. Doi: https://doi.org/10.1016/j.ndteint.2013.11.006

Tosti, F., Ciampoli, L. B., D'Amico, F., Alani, A. M., Benedetto, A. (2018), An experimental-based model for the assessment of the mechanical properties of road pavements using ground-penetrating radar. Construction and Building Materials, 165: 966-974. Doi: https://doi.org/10.1016/j.conbuildmat.2018.01.179

Vyas, V., Patil, V. J., Singh, A. P., Srivastava, A. (2019), Application of infrared thermography for debonding detection in asphalt pavements. Journal of Civil Structural Health Monitoring, 9:325-337. Doi: https://doi.org/10.1007/s13349-019-00337-8

Washer, G., Fenwick, R., Bolleni, N. (2010), Effects of Solar Loading on Infrared Imaging of Subsurface Features in Concrete. Journal of Bridge Engineering, 15(4): 384-390. Doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000117

Published
2020-09-01
How to Cite
Pacara Copa, M., Aquino Rocha, J. H., & Ledezma Perez, J. S. (2020). Time variability analysis for damage detection in flexible pavement using infrared thermography. Revista ALCONPAT, 10(3), 350 - 363. https://doi.org/10.21041/ra.v10i3.468