Evaluation of pathological problems associated with carbonation and sulfates in a concrete tower with more than 50 years in service

  • Erick Edgar Maldonado Bandala Facultad de Ingeniería Civil, Universidad Veracruzana, Circ. Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México.
  • Demetrio Nieves Mendoza Facultad de Ingeniería Civil, Universidad Veracruzana, Circ. Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México.
  • Juan Luis Vela Jimenez Consorcio RNC S.A. de C.V. Esteban Mascareñas 44, Col Mártires de Chicago C.P. 91090, Xalapa, Veracruz, México
  • Pedro Castro Borges Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida, Antigua Carretera a Progreso Km. 6, 97310 Mérida, Yucatán, México; Tels. (999) 942-94-00. Fax: (999) 981-29-23
Keywords: inspection, tower, reinforced concrete, diagnosis, service

Abstract

In preparation for rehabilitation of a 50+ year-old reinforced concrete tower in the southern portion of the state of Veracruz, Mexico, inspections and assays were done to quantify corrosion in the structure. Visual damage survey was done using an aerial drone, and physical, chemical, mechanical and electrochemical assays run to characterize concrete condition and corrosion damage. Carbonation is the predominant corrosion mechanism in the structure. Sulfate emission in the surrounding industrial installations is reflected in low compression resistance, cracks and spalling. Considering the concrete condition and corrosion results, a five-step repair and rehabilitation process is proposed to extend structure service life.

Downloads

Download data is not yet available.

Author Biographies

Erick Edgar Maldonado Bandala, Facultad de Ingeniería Civil, Universidad Veracruzana, Circ. Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México.

Profesor-Investigador Titular C

Facultad de Ingeniería Civil

Universidad Veracruzana

Demetrio Nieves Mendoza, Facultad de Ingeniería Civil, Universidad Veracruzana, Circ. Gonzalo Aguirre Beltrán s/n, Zona Universitaria, C.P. 91000, Xalapa, Veracruz, México.

Profesor-Investigador Titular C

Facultad de Ingeniería Civil

Universidad Veracruzana

Juan Luis Vela Jimenez, Consorcio RNC S.A. de C.V. Esteban Mascareñas 44, Col Mártires de Chicago C.P. 91090, Xalapa, Veracruz, México
Gerente de Ingeniería, Consorcio RNC S.A. de C.V.
Pedro Castro Borges, Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida, Antigua Carretera a Progreso Km. 6, 97310 Mérida, Yucatán, México; Tels. (999) 942-94-00. Fax: (999) 981-29-23
  • Investigador CINVESTAV 3-C 

References

A. Castel, T. Vidal, K. Viriyametanont, R. François, “Effect of Reinforcing Bar Orientation and Location on Bond With Self-Compacting Concreteâ€, ACI Struct. J. 3, Vol. 4 (2006) 559–567.

A. del Valle, J. Perez, A. Torres, M. Madrid, “Evaluación del Puente Pajaritos: Una Estructura de Concreto de 50 Años en el Ambiente Agresivo del Golfo de México†Ingenieria de Construcción, Vol (21) 1, (2006)

A. L. Sulaimani, J. Kaleemullah, M. Bsulbul, A. Rasheeduzzafar, “Infuence of Corrosion and Cracking on Bond Behavior and Strength of Reinforced Concrete Membersâ€. ACI structural Journal. (1992) pp. 220-231.

A. Nasser, A. Clement, S. Laurens, A. Castel, “Influence of Steel-Concrete Interface Condition on Galvanic Corrosion Currents in Carbonated Concreteâ€, Corros. Sci. Vol. 52 (2010) 2878–2890, https://doi.org/10.1016/j.corsci.2010.04.037

ACI 440R-07 Report on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures, American Concrete Institute (2007)

ASTM C114-05, Standard Test Methods for Chemical Analysis of Hydraulic Cement, ASTM International, West Conshohocken, PA, (2005) DOI: https://doi.org/10.1520/C0114-05

ASTM C494 / C494M-17, Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA, 2017. DOI: https://doi.org/10.1520/C0494_C0494M-17

ASTM C876-09, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA, (2009) DOI: https://doi.org/10.1520/C0876-09

C. Andrade, “Manual de Inspección de obras dañadas por corrosión de armaduras†CSIC (1998)

C. Andrade, “Vida útil de las Estructuras de Hormigón Armado: Obras Nuevas y Deterioradas†Seminario Internacional EPUSP/FOSROC sobre patología das estructuras de concreto-Uma Visao moderna. Anis. San Paulo. (1992)

C. Andrade, C. Alonso, J. Gulikers, R. Polder, R. Cigna, Vennesland, M. Salta, A. Raharinaivo, B. Elsener “Thest Metod for On-Site Corrosion rate Measurement of Steel Reinforcement in Concrete by Means of the Polarization Resistance Method†Material and Structures/Matériaux et Constructions. Vol 37 (2004) pp. 623-643. DOI: https://doi.org/10.1007/BF02483292

C. Yu, W. Sun, K. Scrivener “Degradation Mechanism of Slag Blended Mortars Immersed in Sodium Sulfate Solution†Cem. Concr. Res., Vol. 72 (6) (2015), pp. 37-47. https://doi.org/10.1016/j.cemconres.2015.02.015.

Cem. Concr. Res., Vol. 39 (3), (2009), pp. 241-254

DURACON Collaboration, O. TrocοÌnis de Rincón and coauthors. “Durability of concrete structures: Duracon, an Iberoamerican Project. Preliminary resultsâ€. Building & Environment. Elsevier Science LTD Publication. Vol 41 (7). (2006). pp. 952-962.

DURACON Collaboration, O. TrocÏŒnis de Rincón and coauthors. “Effect of the Marine Environment on Reinforced Concrete Durability in Iberoamerican Countries: DURACON Project/CYTEDâ€. Corrosion Science. Elsevier Science LTD Publication. Vol. 49 (7). (2007). pp. 2832-2843. https://doi.org/10.1016/j.corsci.2007.02.009.

E. F. Irassar “Sulfate Attack on Cementitious Materials Containing Limestone Filler – A Review†Cem. Concr. Res., Vol. 39 (3), 2009, Pages 241-254.

https://doi.org/10.1016/j.cemconres.2008.11.007.

F. Bellmann, B. Möser, J. Stark “Influence of Sulfate Solution Concentration on the Formation of Gypsum in Sulfate Resistance Test Specimen†Cem. Concr. Res., Vol. 36 (2) (2006), pp. 358-363. https://doi.org/10.1016/j.cemconres.2005.04.006.

J. Gulikers, M. Raupach, “Numerical Models for the Propagation Period of Reinforcement Corrosion – Comparison of a Case Study Calculated by Different Researchersâ€, Mater. Corros. Vol. 57 (8) (2006) 618–627. https://doi.org/10.1002/maco.200603993

J. Skalny, J. Marchand, I. Odler, â€Sulfate Attack on Concrete†Spon Press, New York (2002)

J. Warkus, M. Raupach, “Modelling of Reinforcement Corrosion – Corrosion With Extensive Cathodesâ€, Mater. Corros. Vol. 57 (12) (2006) 920–925. https://doi.org/10.1002/suco.201200003

NMX-B-457-CANACERO-2013, Industria Siderúrgica – Varilla Corrugada de Acero de Baja Aleación para Refuerzo de Concreto – Especificaciones y Métodos de Prueba, CANACERO (2013)

NMX-C-083-ONNCCE 2010, Industria de la ConstruccioÌn – Concreto – Determinación de la Resistencia a la Compresión de Especímenes – Método de Ensayo, ONNCCE, México DF, (2010)

NMX-C-414-ONNCCE-2014, Industria de la Construcción – Cementantes Hidráulicos – Especificaciones y Métodos de Ensayo. ONNCCE, México DF, (2014)

NMX-C-418-ONNCCE-2015, Industria de la Construcción – Cementos Hidráulicos – Determinación del Cambio de Longitud de Morteros con Cemento Hidráulico Expuestos a una Solución de Sulfato de Sodio. ONNCCE, México DF, (2015)

NMX-C-495-ONNCCE-2015, Industria de la Construcción - Durabilidad de Estructuras de Concreto Reforzado - Medición de Potenciales de Corrosión del Acero de Refuerzo sin Revestir, Embebido en Concreto - Especificaciones y Método de Ensayo. ONNCCE, México DF, (2015)

NMX-C-501-ONNCCE-2015, Industria de la Construcción - Durabilidad de Estructuras de Concreto Reforzado - Medición de Velocidad de Corrosión en Campo - Especificaciones y Método de Ensayo. ONNCCE , México DF, (2015)

NMX-C-515-ONNCCE-2016, Industria de la Construcción – Concretro Hidráulico – Durabilidad – Determinación de la Profundidad de Carbonatación en Concreto Hidráulico – Especificaciones y Método de Ensayo. ONNCCE, México DF, (2016)

NMX-C-518-ONNCCE-2016, Industria de la Construcción - Durabilidad de Estructuras de Concreto Reforzado – Procedimientos de Preparación y Limpieza de Superficies para Reparación. ONNCCE, México DF, (2016)

NTC DF Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto México DF (2008)

O. Troconis de Rincón y Miembros de la Red DURAR. Red Temática XV.B. Durabilidad de la Armadura. Manual De Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, CYTED Maracaibo. Venezuela. (1997).

P. Castro-Borges, M. Balancán-Zapata, A. López-González, “Analysis of tools to evaluate chloride threshold for corrosion onset of reinforced concrete in tropical marine environment of Yucatán, Méxicoâ€. Journal of Chemistry, (2013), Article ID208619, Hindawi Publishing Corporation, http://dx.doi.org/10.1155/2013/208616, 8p.

P. Helene, F. Pereira (2003), Manual de Rehabilitación de Estructuras de hormigón. Reparación, Refuerzo y Protección. Rehabilitar Red Temátca XV.F CYTED. Primera edición .

P.R. Jeanty, D. Mitchell, M.S. Mirza, “Investigation of Top Bar effects in Beamsâ€, ACI Struct. J. Vol.85 (3) (1988) 251–257.

Paweł Regucki, R. Krzyzynska, Z. Szeliga, H. Jouhara, “Mathematical Model of Sulphate ion Concentration in a Closed Cooling System of a Power Plant†Thermal Science and Engineering Progress Vol.4 (2017) 160–167. https://doi.org/10.1016/j.tsep.2017.09.012 .

S. Feliú, J.A. González, V. Feliú, Jr S. Feliú, M.L. Escudero, I. Rz Maribona, V. Austiín, C. Andrade, J.A. Bolaño, F. Jiménez F. (1993), U.S. Patent No. 5.259.944. (1993)

Published
2018-01-31
How to Cite
Maldonado Bandala, E. E., Nieves Mendoza, D., Vela Jimenez, J. L., & Castro Borges, P. (2018). Evaluation of pathological problems associated with carbonation and sulfates in a concrete tower with more than 50 years in service. Revista ALCONPAT, 8(1), 94 - 107. https://doi.org/10.21041/ra.v8i1.284
Section
Study Case