Between green and gray: decarbonization of Portland cement and durability of concrete – a critical review.

Authors

  • Edna Possan Programa de pós-graduação em Engenharia Civil (PPGECI), Universidade Federal da Integração Latino-Americana (Unila), Foz do Iguaçu, Brasil

DOI:

https://doi.org/10.21041/ra.v16i1.978

Keywords:

low-emission cements, durability performance, service life, climate change

Abstract

This paper presents a critical review of the decarbonization of Portland cement (PC) and its implications for concrete durability. The reduction of clinker content, a central strategy to mitigate CO₂ emissions, has been accompanied by physicochemical adjustments that increase PC reactivity, leading to higher heat of hydration and a greater risk of expansive reactions. Moreover, the lower alkaline reserve of low-carbon cement accelerates carbonation, increasing the probability of steel reinforcement corrosion. These and other issues must be considered in the decarbonization process, highlighting the need for systemic studies that address the trade-offs between CO₂ reduction and long-term durability over the service life of concrete structures.

Downloads

Download data is not yet available.

References

Climateworks (2025). Achieving a sustainable U.S. infrastructure bill: New pathways tlly decarbonizing cement and concrete - ClimateWorks Foundation. Avaliable in https://www.climateworks.org/. Acesso 05 setembro 2025.

FIB Bulletin 53 (2010). Model Code for Structural Concrete Textbook on behaviour, design and performance, Second edition. Volume 3: Design of durable concrete structures. 2010, p.390.

Bentz, D. P., Sant, G., Weiss, J. (2008). Early-Age Properties of Cement-Based Materials: I. Influence of Cement Fineness. Journal of Materials in Civil Engineering, [s. l.], v. 1561, n. 2, p. 17. https://doi.org/10.1061/(ASCE)0899-1561(2008)20. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2008)20:7(502)

ABNT. (2018). NBR 16697: Portland cement - Requirements (p. 12).

Aceituno, D., Zhang, X., Hao, H. (2025). A comprehensive review on carbon utilization pathways in concrete from conventional to improved strategies. Carbon Capture Science & Technology, 16, 100467. https://doi.org/10.1016/J.CCST.2025.100467 DOI: https://doi.org/10.1016/j.ccst.2025.100467

Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1. https://doi.org/10.1016/j.envc.2020.100004 DOI: https://doi.org/10.1016/j.envc.2020.100004

Adesina, A., Zhang, J. (2024). Impact of concrete structures durability on its sustainability and climate resiliency. Next Sustainability, 3 (December 2023), 100025. https://doi.org/10.1016/j.nxsust.2024.100025 DOI: https://doi.org/10.1016/j.nxsust.2024.100025

Alexander, M., Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures – review and critique. Cement and Concrete Research, 122, 17–29. https://doi.org/10.1016/J.CEMCONRES.2019.04.018 DOI: https://doi.org/10.1016/j.cemconres.2019.04.018

Andrade, J. J. O., Possan, E., Dal Molin, D. C. C. (2017). Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments. Journal of Building Pathology and Rehabilitation, 2. https://doi.org/10.1007/S41024-017-0025-X DOI: https://doi.org/10.1007/s41024-017-0025-x

Barbhuiya, S., Das, B. B., Adak, D., Kapoor, K., Tabish, M. (2025). Low carbon concrete: advancements, challenges and future directions in sustainable construction. Discover Concrete and Cement, 1(1). https://doi.org/10.1007/s44416-025-00002-y DOI: https://doi.org/10.1007/s44416-025-00002-y

Brasil. (2024). Lei 15.042 - Institui o Sistema Brasileiro de Comércio de Emissões de Gases de Efeito Estufa (SBCE). 1, 1–2.

Castro-Borges, P., Helene, P. (2013). A holistic conceptual approach to concrete service life: a split into different time- stages. Revista Alconpat, 3(3), 228–287. https://doi.org/http://dx.doi.org/10.21041/ra.v8i3.324 DOI: https://doi.org/10.21041/ra.v8i3.324

Choi, Y. W., Khalifa, M., Eltahir, E. A. B. (2024). Climate Change Impact on “Outdoor Days” Over the United States. Geophysical Research Letters, 51(19), 1–10. https://doi.org/10.1029/2024GL111607 DOI: https://doi.org/10.1029/2024GL111607

Coffetti, D., Crotti, E., Gazzaniga, G., Carrara, M., Pastore, T., Coppola, L. (2022). Pathways towards sustainable concrete. Cement and Concrete Research, 154, 106718. https://doi.org/10.1016/J.CEMCONRES.2022.106718 DOI: https://doi.org/10.1016/j.cemconres.2022.106718

Damineli, B. L., Kemeid, F. M., Aguiar, P. S., John, V. M. (2010). Measuring the eco-efficiency of cement use. Cement and Concrete Composites, 32(8), 555–562. https://doi.org/10.1016/j.cemconcomp.2010.07.009 DOI: https://doi.org/10.1016/j.cemconcomp.2010.07.009

Dattani, S., Rodés-Guirao, L., Ritchie, H., Ortiz-Ospina, E., Roser, M. (2025). Life Expectancy. 2023. https://ourworldindata.org/life-expectancy

de Brito, J., Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281. https://doi.org/10.1016/j.jclepro.2020.123558 DOI: https://doi.org/10.1016/j.jclepro.2020.123558

De Rooij, M., Van Tittelboom, K., Belie, N. de, Schlangen, E. (2013). RILEM TC 221-SHC: Self-Healing Phenomena in Cement-Based Materials. In Springer (Vol. 1). DOI: https://doi.org/10.1007/978-94-007-6624-2_1

Emanuelsson, A. H., Rootzén, J., Johnsson, F. (2025). Deployment of carbon capture and storage in the cement industry – Is the European Union up to shape?. International Journal of Greenhouse Gas Control, 146, 104442. https://doi.org/10.1016/J.IJGGC.2025.104442 DOI: https://doi.org/10.1016/j.ijggc.2025.104442

Felix, E. F., Carrazedo, R., Possan, E. (2021). Carbonation model for fly ash concrete based on artificial neural network: Development and parametric analysis. Construction and Building Materials, 266, 121050. https://doi.org/10.1016/j.conbuildmat.2020.121050 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121050

Félix, E. F., Falcão, I. da S., dos Santos, L. G., Carrazedo, R., Possan, E. (2023). A Monte Carlo-Based Approach to Assess the Reinforcement Depassivation Probability of RC Structures: Simulation and Analysis. Buildings, 13(4). https://doi.org/10.3390/buildings13040993 DOI: https://doi.org/10.3390/buildings13040993

fib. (2024). Model Code for Structural Concrete (2020). In International Federation for Structural Concrete (fib). fédération internationale du béton / International Federation for Structural Concrete (fib).

Funahashi Jr, E. I., Possan, E., Hasparyk, N. P. (2024). Influência do calor de hidratação de cimentos com escória de alto forno no risco de formação da etringita tardia (DEF). Ibracon, 1, 1–16.

Ghellere, P., Lenz, S. K., Passarini, M. R. Z., Possan, E. (2025). Evaluation of different biological agents and application methods on the cracks self-healing in cement-based matrices. Journal of Building Pathology and Rehabilitation, 10(2). https://doi.org/10.1007/s41024-025-00594-9 DOI: https://doi.org/10.1007/s41024-025-00594-9

Goulart, R. G. (2023). Ecoeficiência de concretos com agregados graúdos reciclados de construção e demolição (Vol. 1) [Dissertation]. Universidade Federal da Integração Latino-Americana.

Gursel, A. P., Shehabi, A., Horvath, A. (2023). What are the energy and greenhouse gas benefits of repurposing non-residential buildings into apartments? Resources, Conservation and Recycling, 198, 107143. https://doi.org/10.1016/J.RESCONREC.2023.107143 DOI: https://doi.org/10.1016/j.resconrec.2023.107143

Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth and Environment, 1(11), 559–573. https://doi.org/10.1038/s43017-020-0093-3 DOI: https://doi.org/10.1038/s43017-020-0093-3

Habert, G., Roussel, N. (2009). Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement and Concrete Composites, 31(6), 397–402. https://doi.org/10.1016/J.CEMCONCOMP.2009.04.001 DOI: https://doi.org/10.1016/j.cemconcomp.2009.04.001

Hansen, J. E., Sato, M., Simons, L., Nazarenko, L. S., Sangha, I., Kharecha, P., Zachos, J. C., von Schuckmann, K., Loeb, N. G., Osman, M. B., Jin, Q., Tselioudis, G., Jeong, E., Lacis, A., Ruedy, R., Russell, G., Cao, J., Li, J. (2023). Global warming in the pipeline. Oxford Open Climate Change, 3(1). https://doi.org/10.1093/oxfclm/kgad008 DOI: https://doi.org/10.1093/oxfclm/kgad008

Harari, Y. N. (2020). Sapiens: a brief history of Humankind. Companhia das Letras.

Harari, Y. N. (2024). Nexus: a brief history of information networks from the stone age to AI (Dom, Ed.). Random House.

Haspryk, N. P., Kuperman, S. C., Funahashi Jr, E. I., Vicente, G. R., Gambale, E. de A. (2023). Recomendações Técnicas para a prevenção da DEF e da fussuração térmica no concreto. In Educacao e Sociedade (Vol. 1, Issue 1). http://www.biblioteca.pucminas.br/teses/Educacao_PereiraAS_1.pdf%0Ahttp://www.anpocs.org.br/portal/publicacoes/rbcs_00_11/rbcs11_01.htm%0Ahttp://repositorio.ipea.gov.br/bitstream/11058/7845/1/td_2306.pdf%0Ahttps://direitoufma2010.files.wordpress.com/2010/

IEA/CSI. (2009). Cement Technology Roadmap: Carbon Emissions Reductions up to 2050.

IPPC. Intergovernmental Panel on Climate Change. (1992). Climate change: The IPCC 1990 and 1992 assesments. In The World Environment 1972–1992. https://doi.org/10.1007/978-94-011-2280-1_3 DOI: https://doi.org/10.1007/978-94-011-2280-1_3

Jonkers, H. M., Schlangen, E. (2007). Self-healing of cracked concrete: A bacterial approach. Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 3, 1821–1826.

Juenger, M. C. G., Snellings, R., Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122(February 2019), 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008 DOI: https://doi.org/10.1016/j.cemconres.2019.05.008

Koutroulis, A. G. (2019). Dryland changes under different levels of global warming. Science of the Total Environment, 655, 482–511. https://doi.org/10.1016/j.scitotenv.2018.11.215 DOI: https://doi.org/10.1016/j.scitotenv.2018.11.215

Kumar, R. (2020). Dynamic Dalmia: Can They Do it Again ?. 1–10. https://doi.org/10.1177/2516604220928787 DOI: https://doi.org/10.1177/2516604220928787

Kumar, S., Gangotra, A., Barnard, M. (2025). Towards a Net Zero Cement: Strategic Policies and Systems Thinking for a Low-Carbon Future. Current Sustainable/Renewable Energy Reports, 12(1), 1–13. https://doi.org/10.1007/s40518-025-00253-0 DOI: https://doi.org/10.1007/s40518-025-00253-0

Lenz, S. K., Possan, E., Passarini, M. R. Z., Ghellere, P. (2023). Influence of different bacterial strains on cracks self healing in cement based matrices with and without incorporated air. Journal of Building Pathology and Rehabilitation, 3. https://doi.org/10.1007/s41024-023-00312-3 DOI: https://doi.org/10.1007/s41024-023-00312-3

Martinez, D. M., Miller, S. A., Monteiro, P. J. M. (2025). How sustainable was ancient Roman concrete? IScience, 28(8), 113052. https://doi.org/10.1016/J.ISCI.2025.113052 DOI: https://doi.org/10.1016/j.isci.2025.113052

Mehta, P. K., Monteiro, P. J. M. (2014). Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education.

NASA. (n.d.). Carbon Dioxide. 2025. Retrieved August 25, 2025, from https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121

Nehdi, M. L., Marani, A., Zhang, L. (2024). Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies. Renewable and Sustainable Energy Reviews, 191, 114169. https://doi.org/10.1016/J.RSER.2023.114169 DOI: https://doi.org/10.1016/j.rser.2023.114169

NOAA, N. O. and A. A. (2025). Global Monitoring Laboratory.

NOAA/ESRL, 2022. (2025). Trends in Atmospheric Carbon Dioxide. Earth System Research Laboratories. Global Monitoring Laboratory. In Earth System Research Laboratories. https://gml.noaa.gov/ccgg/trends/

OECD. (2024). How’s Life? 2024: Well-being and Resilience in Times of Crisis. https://doi.org/https://doi.org/10.1787/90ba854a-en DOI: https://doi.org/10.1787/90ba854a-en

Oliveira, D. R. B., Leite, G., Possan, E., Marques Filho, J. (2023). Concrete powder waste as a substitution for Portland cement for environment-friendly cement production. Construction and Building Materials, 397(July), 1–12. https://doi.org/10.1016/j.conbuildmat.2023.132382 DOI: https://doi.org/10.1016/j.conbuildmat.2023.132382

Oliveira, D. R. B., Proença, M. P., Risson, K. D. B. de S., Neves Junior, A., Marques Filho, J., Possan, E. (2025). Optimized cementitious matrices with activated CDW fines: A sustainable path to low carbon cement. Construction and Building Materials, 483, 141719. https://doi.org/10.1016/J.CONBUILDMAT.2025.141719 DOI: https://doi.org/10.1016/j.conbuildmat.2025.141719

Olivier, J. G. J., Paters, J. A. H. W. (2020). Trends in global CO2 and total greenhouse gas 2020 report (Issue December). https://www.pbl.nl/en/publications/trends-in-global-co2-and-total-greenhouse-gas-emissions-2020-report

Olsson, J. A., Miller, S. A., Alexander, M. G. (2023). Near-term pathways for decarbonizing global concrete production. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-40302-0 DOI: https://doi.org/10.1038/s41467-023-40302-0

Pauletti, C. (2004). Análise comparativa de procedimentos para ensaios acelerados de carbonatação.

Population Matters. (2025). population matters. 2025. https://populationmatters.org/

Possan, E. (2010). Modelagem da Carbonatação e Previsão de Vida Útil de Estruturas de Concreto em Ambiente Urbano [Tesis]. UFRGS.

Possan, E. (2019). Captura de CO 2 em materiais cimentícios. 72–78.

Possan, E., Dal Molin, D. C. C., Andrade, J. J. O. (2018). A conceptual framework for service life prediction of reinforced concrete structures. Journal of Building Pathology and Rehabilitation, 3(1). https://doi.org/10.1007/s41024-018-0031-7 DOI: https://doi.org/10.1007/s41024-018-0031-7

Proença, M. P., Oliveira, D. R. B., de Souza Risson, K. D. B., Possan, E. (2024). CDW Powder Activated by Mechanical, Thermal and Tannic Acid Treatment: An Option for Circularity in Construction. Waste and Biomass Valorization, 0123456789. https://doi.org/10.1007/s12649-024-02802-y DOI: https://doi.org/10.1007/s12649-024-02802-y

Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S. A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E. D., de la Rue du Can, S., … Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy, 266, 114848. https://doi.org/10.1016/J.APENERGY.2020.114848 DOI: https://doi.org/10.1016/j.apenergy.2020.114848

Ritchie, H., & Roser, M. (2025). CO₂ emissions. 2020. https://ourworldindata.org/co2-emissions

ROADMAP BRASIL. (2019a). Roadmap Tecnológico do Cimento: Potencial de redução das emissões de carbono da indústria do cimento brasileira até 2050. SNIC 2019.

ROADMAP BRASIL. (2019b). Roadmap Tecnológico do Cimento: Potencial de redução das emissões de carbono da indústria do cimento brasileira até 2050. SNIC 2019.

Scrivener, K. L., John, V. M., Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015 DOI: https://doi.org/10.1016/j.cemconres.2018.03.015

Shah, I. H., Miller, S. A., Jiang, D., Myers, R. J. (2022). Cement substitution with secondary materials can reduce annual global CO2 emissions by up to 1.3 gigatons. Nature Communications, 13(1). https://doi.org/10.1038/S41467-022-33289-7 DOI: https://doi.org/10.1038/s41467-022-33289-7

Simoneto, G. W. (2024). Diagnóstico temporal das alterações físico-química do cimento Portland brasileiro e do uso de cimento ensacado para produção de concreto in situ (Vol. 4, Issue 1) [Dissertation]. Universidade Federal da Integração Latino-Americana.

Suleyman, M., Bhaskar, M. (2023). A próxima onda. In RECORD (Vol. 1, Issue 1).

United Nations. (2017). World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. In Department of Economic and Social Affairs,Population Division (Vol. 11, Issue 1).

WBCSD. (2018a). Technology roadmap for cement - World Business Council for Sustainable Development. In International Energy Agency. https://www.wbcsd.org/resources/technology-roadmap-low-carbon-transition-in-the-cement-industry/

WBCSD. (2018b). World Business Council for Sustainable Development. Technology roadmap for cement. In International Energy Agency.

Yan, J., Zhang, Z. (2019). Carbon Capture, Utilization and Storage (CCUS). Applied Energy, 235, 1289–1299. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.11.019 DOI: https://doi.org/10.1016/j.apenergy.2018.11.019

Published

2026-01-01

How to Cite

Possan, E. (2026). Between green and gray: decarbonization of Portland cement and durability of concrete – a critical review . Revista ALCONPAT, 16(1), 42–59. https://doi.org/10.21041/ra.v16i1.978

Issue

Section

Review