Development of lightweight ultra high performance concrete to architectural applications.

  • Jorge Xilotl-Dominguez Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Monterrey, México.
  • Alejandro Durán-Herrera Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Monterrey, México.
  • Lucio Guillermo Lopez Yepez Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Monterrey, México.
  • Ana Luisa Muñoz Espinoza Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Monterrey, México.
Keywords: lightweight UHPC, durability, thermal performance, electrical resistivity, PVA fibers

Abstract

This study aims to reduce the weight and enhance the thermal performance of Ultra-High-Performance Concrete (UHPC) for architectural applications while maintaining adequate mechanical strength. To achieve this, expanded polystyrene perlite (EPP) was used to replace limestone sand by mass (0, 30, 55, 80, and 100%) and synthetic Polyvinyl Alcohol (PVA) structural fiber was added. The mixes were evaluated for compressive and flexural strength, surface and bulk electrical resistivity, and thermal conductivity. Results showed that EPP significantly reduced density and thermal conductivity, while PVA improved strength. However, high EPP contents decreased mechanical performance. The combination of EPP and PVA in UHPC is innovative. It was concluded that optimized mixtures can balance thermal efficiency and structural integrity for architectural uses.

Downloads

Download data is not yet available.

References

Abu, Y., Sulaiman, D., Akeed, M., Qaidi, S., Tayeh, B. (2022). Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete. Case Studies in Construction Materials, Volume 17, e01234, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2022.e01234.

Akeed, M., Qaidi, S., Ahmed, H., Faraj, R., Mohammed, A., Mahmood, W., Tayeh, B., Azevedo, A. (2022). Ultra-high-performance fiber-reinforced concrete. Part IV: Durability properties, cost assessment, applications, and challenges. Case Studies in Construction Materials. 17. e01271. https://doi.org/10.1016/j.cscm.2022.e01271.

Alkadhim, H. A., Amin, M. N., Ahmad, W., Khan, K., Umbreen-us-Sahar, Al-Hashem, M. N., Mohamed, A. (2022) An overview of progressive advancement in ultra-high performance concrete with steel fibers. Front. Mater. 9:1091867. doi: https://doi.org/10.3389/fmats.2022.1091867

Andrade, C., D’Andrea, R. (2011). La resistividad eléctrica como parámetro de control del hormigón y de su durabilidad. Revista de la Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción, 1(2), 93-101.

AASHTO TP 95 (2014), “Standard Test Method for Surface Resistivity of Concrete’s Ability to Resist Chloride Ion Penetration,” American Association of State Highway and Transportation Officials, Washington, DC, 10 pp.

Azmee, N. M., Shafiq, N. (2018). Ultra-High-Performance Concrete: From Fundamental to Applications. Case Studies in Construction Materials. doi: https://doi.org/10.1016/j.cscm.2018.e00197

Badogiannis, E., Maria, S., Konstantinos, A., Alexandros, C. (2021). Durability of Structural Lightweight Concrete Containing Different Types of Natural or Artificial Lightweight Aggregates. Corrosion and Materials Degradation 2, no. 4: 554-567. https://doi.org/10.3390/cmd2040029.

Bozorgmehr, S., Nemati, M. (2023). Applied development of sustainable-durable high-performance lightweight concrete: Toward low carbon footprint, durability, and energy saving, Results in Materials, Volume 20, 100482, ISSN 2590-048X, https://doi.org/10.1016/j.rinma.2023.100482.

Chung, S.-Y., Sikora, P., Kim, D. J., El Madawy, M. E., Abd Elrahman, M. (2021). Effect of different expanded aggregates on durability-related characteristics of lightweight aggregate concrete. Materials Characterization, 173, 110907. doi: https://doi.org/10.1016/j.matchar.2021.110907.

Dixit, A., Pang, S. D., Kang, S.-H., Moon, J. (2019). Lightweight structural cement composites with expanded polystyrene (EPP) for enhanced thermal insulation. Cement and Concrete Composites. doi: https://doi.org/10.1016/j.cemconcomp.2019.04.023

Dong, Y. (2018). Performance assessment and design of ultra-high-performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts. Construction and Building Materials, 167, 414–425. doi: https://doi.org/10.1016/j.conbuildmat.2018.02.037

Du, J., Meng, W., Khayat, K. H., Bao, Y., Guo, P., Lyu, Z., Wang, H. (2021). New development of ultra-high-performance concrete (UHPC). Composites Part B: Engineering, 224, 109220. doi: https://doi.org/10.1016/j.compositesb.2021.109220

FM 5-578 (2004), “Florida Method of Concrete Resistivity as an Electrical Indicator of its Permeability”, Florida, U.S.A

Gasparri, E., Brambilla, A., Lobaccaro, G., Goia, F., Andaloro, A. Sangiorgio, A. (2022). Rethinking Building Skins - Facade Tectonics Institute

Gong, J., Ma, Y., Fu, J., Hu, J., Ouyang, X., Zhang, Z., Wang, H. (2022). Utilization of fibers in ultra-high performance concrete: A review. Composites Part B: Engineering. Volume 241, 109995, ISSN 1359-8368, https://doi.org/10.1016/j.compositesb.2022.109995.

Habil, M., Fehling, E. (2005). Ultra-High-Performance Concrete: Research, Development and Application in Europe. ACI Special Publication. 228.

Huang, H., Teng, L., Gao, X., Khayat, K., Wang, F., Liu, Z. (2022). Use of saturated lightweight sand to improve the mechanical and microstructural properties of UHPC with fiber alignment. Cement and Concrete Composites, Volume 129, 104513, ISSN 0958 9465, https://doi.org/10.1016/j.cemconcomp.2022.104513.

Kishore, M., Yadav, H., Garg, A. (2015). Architectural Use of Precast Ultra High-Performance Concrete. International Journey of Scientific Research. ISSN 2277 – 8179

Le, A., Ekkehard, F. (2017). Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete. Construction and Building Materials. 153. 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130.

Li, Y., Zhan, G., Yang, J., Ding, Y., Ding, Q., Wang, Y. (2022). Chloride Ion Transport Properties in Lightweight Ultra-High-Performance Concrete with Different Lightweight Aggregate Particle Sizes. Materials 15, no. 19: 6626. https://doi.org/10.3390/ma15196626.

Lu, J., Shen, Pe., Ali, H., Poon, C. (2022). Mix design and performance of lightweight ultra-high-performance concrete. Materials & Design. https://doi.org/10.1016/j.matdes.2022.110553

Market Research Report (2023). Trends in the Façade Systems Market - Coherent Market Insights Code: CMI6229. Recuperado de: https://www.coherentmarketinsights.com/industry-reports/facade-systems-market

Mazzacane, P., Ricciotti, R., Lamoureux, G., Corvez, D. (2013). Roofing of the stade Jean Bouin in UHPFRC. In Proceedings of international Symposium on ultra-high performance fibre-reinforced concrete (pp. 59-68)

Meng, W., Khayat, K. (2017). Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete. Cement and Concrete Research, 101, 46–54. doi: https://doi.org/10.1016/j.cemconres.2017.08.018

Noushini, A. Samali, B., Vessalas, K. (2013). Flexural Toughness and Ductility Characteristics of Polyvinyl Alcohol Fibre Reinforced Concrete (PVA-FRC). Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS 2013. 1110-1121.

Perry V. (2018). What really is ultra-high performance concrete – towards a global definition. In: Proceedings of the 2nd international conference on UHPC materials and structures. Fuzhou: RILEM Publications.

Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z., Fang, Z. (2015). A review on ultra high performance concrete: Part I. Raw materials and mixture design. Construction and Building Materials, 101, 741–751. doi: https://doi.org/10.1016/j.conbuildmat.2015.10.088

Siwinski, J., Szczeniak, A., Stolarski, A. (2020). Modified Formula for Designing Ultra-High-Performance Concrete with Experimental Verification. MDPI Journal Materials, Materials, 13, 4518. https://doi.org/10.3390/ma13204518

Soliman, N. A., Tagnit-Hamou, A. (2017). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374–383. doi: https://doi.org/10.1016/j.conbuildmat.2017.02.084

Thienel, K.-C., Haller, T., Beuntner, N. (2020). Lightweight Concrete – From Basics to Innovations. Materials, 13, 1120. https://doi.org/10.3390/ma13051120

Umbach, C., Wetzel, A., Middendorf, B. (2021). Durability Properties of Ultra-High Performance Lightweight Concrete (UHPLC) with Expanded Glass. Materials 14, no. 19: 5817. https://doi.org/10.3390/ma14195817.

Wang, X., Wu, D., Geng, Q., Hou, D., Wang, M., Li, L., Wang, P., Chen, D., Sun, Z. (2021). Characterization of sustainable ultra-high-performance concrete (UHPC) including expanded perlite. Construction and Building Materials, 303, 124245. doi: https://doi.org/10.1016/j.conbuildmat.2021.124245

Weina, M., Samaranayake, V., Khayat, K. (2018). Factorial design and Optimization of Ultra-High-Performance Concrete with Lightweight Sand. ACI materials Journal. ResearchGate. DOI: https://doi.org/10.14359/51700995

Wetzel, A., Umbach, C., Ekkehard, F., Middendorf, B. (2016). Multifunctional prefabricated walls made of UHPC and foam concrete.

Yang, J., Chen, B., Su, J., Xu, G., Zhang, D., Zhou, J. (2022). Effects of fibers on the mechanical properties of UHPC: A review. Journal of Traffic and Transportation Engineering (English Edition), Volume 9, Issue 3, Pages 363-387, ISSN 2095-7564, https://doi.org/10.1016/j.jtte.2022.05.001.

Zulkarnain, F., Ramli, M. (2008). Durability performance of lightweight aggregate concrete for housing construction. 2nd international conference on built environment in developing countries. Recuperado de: https://core.ac.uk/download/pdf/83543337.pdf

Published
2025-09-01
How to Cite
Xilotl-Dominguez, J., Durán-Herrera, A., Lopez Yepez, L. G., & Muñoz Espinoza, A. L. (2025). Development of lightweight ultra high performance concrete to architectural applications. Revista ALCONPAT, 15(3), 299 - 314. https://doi.org/10.21041/ra.v15i3.907