Study on the hydration of Portland cement paste replaced with blast furnace slag, fly ash, and metakaolin: effect on the usage of two superplasticizer additives
Abstract
This research was focused on assessing the impact that different replacement materials and two superplasticizers on the development of the mechanical properties, phases formation and heat evolution of portland cement pastes, with replacement levels up to 60%. For this purpose, fly ash, ground granulated blast furnace slag, metakaolin and silica fume were used. The mixtures were manufactured with a water/solid of 0.4, 0.3% of superplasticizer and cured up to 60 days. Results showed that with the use of replacement materials, the calcium hydroxide content was reduced, due to the pozzolanic reaction, and the compressive strength was increased.
Â
Downloads
References
Ali M., Gözde I.N.S., Kambiz R., 2014. Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point., Construction and Building Materials, 70: 17–25.
Bentz D.P., Hansen A.S., Guynn J. M. (2011) “Optimization of cement and fly ash particle sizes to produce sustainable concretesâ€, Cement and Concrete Composites, 33, pp. 824–831.
Caldarone M. A., Gruber K. A., Burg R.G. (1994) “High-reactivity metakaolin: a new generation minerals admixtureâ€; Concrete International: design and construction, pp. 37-40.
CEMBUREAU (2014), The European Cement Association Activity Report.
Escalante GarcÃa J. I. (1996); PhD thesis: The effect of temperature on the hydration of Portland cement and composite cement pastes; University of Sheffield.
Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) “Sustainable development and climate change initiativesâ€; Cement and Concrete Research, 38; pp. 115–127.
Esteves L. P., Cachim P. B., Ferreira V. M. (2010) “Effect of fine aggregate on the rheology properties of high performance cement-silica systemsâ€; Construction and Building Materials, 24, pp. 640-649.
Gesoglu M., Guneyisi E., Özbay E. (2009) “Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume; Construction and Building Materials, 23, pp. 1847-1854.
Golapan M. K. (1993) “Nucleation and pozzolanic factors in strength development of class F fly ahs concreteâ€; ACI Materials Journal, pp. 117-121.
Gutteridge W. A., Dalziel J. A. (1990) “The effect of a secondary component on the hydration of Portland cement, Part II: Fine hydraulic bindersâ€; Cement and Concrete Research, 20, pp. 853-861.
Haha M. B, Saout G. Le, Winnefeld F., Lothenbach B. (2011) “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast furnace slagsâ€; Cement and Concrete Research, 41, pp. 301-310.
Hwang C. L., Shen D. H. (1991) “The effects of Blastfurnace slag and fly ash on the hydration of Portland cementâ€; Cement and Concrete Research, 21, pp. 410-425.
Isaia G. C., Gastaldini A.L.G:, Morales R., (2003) “Physical and pozzolanic action of mineral additions on the mechanical strength of high performance concreteâ€; Cement and Concrete Composites Vol. 25, pp. 69-76.
Janotka I., Puertas F., Palacios M., Kuliffayová M., Varga C. (2010) “Metakaolin sand-blended-cement pastes: Rheology, hydration process and mechanical propertiesâ€; Construction and Building Materials, 24, pp. 791-802.
Juenger M.C.G., Siddique R. (2015) “Recent advances in understanding the role of supplementary cementitious materials in concreteâ€, Cement and Concrete Research 78, pp. 71–80
Khatib J. M., Sabir B. B., Wild S. (1996) “Pore size distribution of metakaolin pasteâ€; Cement and Concrete Research,. 26, pp. 1545-1553.
Langan B. W., Weng K., Ward M. A. (2002) “Effect of silica fume and fly ash on heat of hydration of Portland cementâ€; Cement and Concrete research, 32, pp. 1045-1051.
Lothenbach B., Winnefeld F., Figi R. (2007) “The influence of superplasticizers on the hydration of Portland cementâ€; Empa, Dübendorf, Switzerland.
Mansour S. M., Abadlia M. T., Bekkour K. (2010) “Improvement of Rheological Behaviour of Cement Pastes by Incorporating Metakaolinâ€; European Journal of Scientific Research, 42, pp. 428-438.
MartÃnez-Alvarado M. J; (2009); Tesis: Estudio de la hidratación de la escoria granulada de alto horno (EGAH) a diferentes temperaturas; MaestrÃa en Ciencias en IngenierÃa Metalúrgica; Escuela Superior de IngenierÃas e Industrias Extractivas; Instituto Politécnico Nacional, México, D.F.
Meredith P., Donald A.M. Meller N., Hall C. (2004) “Tricalcium aluminate hydration: microestructural observations by in-situ electron microscopyâ€; Journal of Materials Science 39, pp. 997-1005.
Mollah M. Y. A., Adams W. J., Schennach R., Cocke D. L. (2000) “A review of cement – superplasticizers interactions and their modelsâ€; Advances in Cement Research 12, pp. 153-161.
Ping D., Zhonghe S., Wei C. , Chunhua S., 2013. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete., Construction and Building Materials, 44: 1–6.
Plank J., Dai Z., Andres P.R. (2006), “Preparation and characterization of new Ca-Al-polycarboxilate layered double hydroxidesâ€; Materials Letters 60; pp. 3614-3617.
Plank J., Zhimin D., Keller H., Hössle F. V., Seidl W. (2010) “Fundamental mechanisms for polycarbozylate intercalation into C3A hydrate phases and the role of sulfate present in cementâ€; Cement and Concrete Research, 40. pp. 45-57.
Roy D. M., Arjunan P., Silsbee M. R. (2001) “Effect of silica fume, metakaolin, and low-calcium fly ash on chemical resistance of concreteâ€; Cement and Concrete Research, 31, pp. 1809-1813.
Schneider M, Romer M, Tschudin M, Bolio H. (2011), “Sustainable cement production at present and futureâ€, Cement and Concrete Research; 41, pp. 642–650.
Schöler A. , Lothenbach B., Winnefeld F., Zajac M. (2015) “Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone poder†Cement and Concrete Composites, 55, pp.374–382.
Sharfuddin A., Obada K., Wendy A., 2008. Chloride penetration in binary and ternary blended cement concretes asmeasured by two different rapid methods ., Cement and Concrete Composite, 30:576–582
Slanicka S. (1999) “The influence of fly ash fineness on the strength of concreteâ€; Cement and Concrete Research, 21, pp. 285-96.
Snelson D.G., Wild S., O’Farrel M. (2008), “Heat of hydration of Portland Cement-Metakaolin-Fly ash (PC-MK-PFA) blendsâ€; Cement and Concrete Research, Vol. 38, pp. 832-840.
Talero R. (2005), “Performance of metakaolin and Portland cements in ettringite formation as determined by ASTM C 452-68: kinetic and morphological differencesâ€; Cement and Concrete Research,. 35, pp. 1269-1284.
Talero R., Rahhal V. (2009); “Calorimetric comparison of portland cements containing silica fume and metakaolinâ€; Journal of Thermal Analysis and Calorimetry, 96, pp. 383-393.
Yun G., Geert De S., Guang Y., Zhuqing Y., Zhijun T., Kai W., 2013, A microscopic study on ternary blended cement based composites. Construction and Building Materials, 46: 28–38.
Wild S., Khatib J.M., Jones A. (1996) “Relative strength pozzolanic activity and cement hydration in superplasticised metakaolin concreteâ€; Cement and Concrete Research. 26; pp. 1537-1544.
Winnefeld F., Becker S., Pakusch J., Götz T. (2007) “Effects of the molecular architecture of comb- shaped superplasticizers on their performance in cementitious systemsâ€, Cement and Concrete Composites, 29, pp. 251-262.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.