The potential of a method for the synthesis of ceramic-cementitious materials processed by an alternative route

  • J. D. Martínez-Vásquez Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo
  • D. E. Ortega-Zavala Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo
  • G. Vargas Gutiérrez Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo
  • A. F. Fuentes Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo
  • J. I. Escalante-García Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo
Keywords: geopolymers; ceramics chemically bound; activated clays; precast products.

Abstract

Formulations of thermochemically bonded ceramics based on silicoaluminate raw materials were
characterized. The mixtures were prepared using low water:solid and these were pressed under up to
30MPa. The specimens were cured for 2 hours at 200°C and were further characterized. The flexural
strength registered 6.9-15.7 MPa, which was higher than common cements conventionally processed. The
microstructures were dense, suggesting a favorable response of the mixtures to the activation process. The
flexural strength varied with the type and amount of mixed raw materials. X-ray diffraction indicated that
the crystalline phases from the raw materials did not react; the formation of zeolites was not observed.
The proposed processing is promising in order to obtain high strength in short curing times.
Keywords: geopolymers; ceramics chemically bound; activated clays; precast products

Downloads

Download data is not yet available.

References

Arellano-Aguilar R., Burciaga-Díaz O., Gorokhovsky A., Escalante-Garcia J.I. (2014), “Geopolymer mortars based on a low grade metakaolin: Effects of the chemical composition, temperature and aggregate:binder ratio”, Construction and Building Materials,V.50, pp. 642–648. DOI: https://doi.org/10.1016/j.conbuildmat.2013.10.023

Asbridge A.H., Page C.L., Page M.M. (2002), “Effects of metakaolin, water/binder ratio and interfacial transition zones on the microhardness of cement mortars”, Cem Conc Res, V.32, pp. 1365-1369. DOI: https://doi.org/10.1016/S0008-8846(02)00798-6

Barbosa F.F., MacKenzie J.D., Thaumaturgo C. (2000), “Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”, International Journal of Inorganic Materials, V. 2, pp. 309-317. DOI: https://doi.org/10.1016/S1466-6049(00)00041-6

Barbosa V.F., MacKenzieK.J. (2003), “Thermal behavior of inorganic geopolymers and composites derived from sodium polysialate”, Mater Res Bull, V. 38, pp. 319–31. DOI: https://doi.org/10.1016/S0025-5408(02)01022-X

Burciaga Díaz O. (2004), “Investigación inicial del uso de caolín del estado de Zacatecas en la preparación de cerámicos a base de polímeros inorgánicos.”, Tesis de licenciatura, Instituto Tecnológico de Zacatecas/Cinvestav Saltillo.

Burciaga Díaz O., Escalante García J.I. (2004), “Efecto de parámetros químicos de soluciones alcalinas sobre las propiedades mecánicas de polímeros inorgánicos base metacaolín”, Memorias del 26 congreso internacional en metalurgia y materiales, Saltillo, Coahuila (MEX), articulo 16.

Burciaga-Diaz O., Escalante-Garcia J I, Gorokhovsky A. (2012), “Geopolymers based on a coarse low-purity kaolin mineral: Mechanical strength as a function of the chemical composition and temperature”, Cement & Concrete Composites, V. 34, pp. 18–24. DOI: https://doi.org/10.1016/j.cemconcomp.2011.08.001

Davidovits J., Boutterin C. (1982), “Procédé de fabrication de revêtements de sols ou de murs par polycondensation de géopolymères”, FR Brevet 82 10864.

Davidovits J. (1984), “Synthetic mineral polymer compound of the silicoaluminates family and preparation process”, US Patent 4,472,199.

Davidovits J. (1991), “Geopolymers: Inorganic Polymeric New Materials”, J Thermal Analysis, Vol 37, pp. 1633-1656. DOI: https://doi.org/10.1007/BF01912193

Davidovits J. (2002), “30 years of successes and failures in geopolymers applications. Market trends and potential breakthroughs”, Geopolymer 2002 conference, October 28-29, Melbourne Australia, pp 1-16.

de Vargas A.S., Dal Molin CC, Antônio CF, da Silva F J, Pavão B, Veit H (2011),“The effects of Na2 O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers”. CemConcrComp, V. 33, pp. 635–60. DOI: https://doi.org/10.1016/j.cemconcomp.2011.03.006

Kakali G., Perraki T., Tsivilis. S. (2001), “Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity”. Applied Clay Science, V. 20, pp. 73-80. DOI: https://doi.org/10.1016/S0169-1317(01)00040-0

Palomo A., Grutzeck M.W., Blanco M.T. (1999), “Alkali-activated fly ashes A cement for the future”, Cem Concr Res, V. 29,pp. 1323-1329. DOI: https://doi.org/10.1016/S0008-8846(98)00243-9

Rowles M, O´Connor B (2003), “Chemical optimization of the compressive strength of aluminate geopolymerssynthetised by sodium silicate activation of metakaolinite”, J of Materials Chemistry, V. 13, pp. 1161-1165. DOI: https://doi.org/10.1039/b212629j

Shvarzman A., Kovler K., Grader G.S. (2003), “The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite”, Cement and Concrete Research, V. 33, pp. 405- 416. DOI: https://doi.org/10.1016/S0008-8846(02)00975-4

Zivica V., Balkovic S., Drabik M. (2011), “Properties of metakaolin geopolymer hardened paste prepared by high-pressure compaction”, Con and Bui Mat, V. 25, pp. 2206-2213. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.004

Published
2015-05-30
How to Cite
Martínez-Vásquez, J. D., Ortega-Zavala, D. E., Vargas Gutiérrez, G., Fuentes, A. F., & Escalante-García, J. I. (2015). The potential of a method for the synthesis of ceramic-cementitious materials processed by an alternative route. Revista ALCONPAT, 5(2), 114 - 123. https://doi.org/10.21041/ra.v5i2.81
Section
Basic Research