Computational modeling of cracking in autoclaved aerated concrete blocks and masonry wallets.

  • Luis Fernández-Baqueiro Universidad Autónoma de Yucatán
  • Laura Ceballos-Pérez Universidad Autónoma de Yucatán
  • Joel Moreno-Herrera Universidad Autónoma de Yucatán
  • Jorge Varela-Rivera Universidad Autónoma de Yucatán
Keywords: autoclaved aerated concrete, masonry, tensile strength, Finite Element Method, discrete crack model

Abstract

The objective of this research was to study the cracking process of autoclaved aerated concrete (AAC) blocks and masonry wallets with discrete crack models of the Finite Element Method. The results of an experimental study were analyzed to develop computational models. Models of the splitting tensile strength tests of blocks and the diagonal tensile strength test of masonry wallets, of different sizes, were developed. Rankine and Mohr failure criteria were considered for the interface elements. The cracking loads were determined. It was concluded that, with the developed models, the cracking loads and the failure mechanism of AAC blocks and wallets are well simulated compared to what was observed experimentally.

Downloads

Download data is not yet available.

References

Ahmed, A., Shahzada K., Muhammad, A.S., Naeem, K.A., Ali, S.A. (2019), Confined and unreinforced masonry structures in seismic areas: Validation of macro models and cost analysis. Engineering Structures. 199, 109612. https://doi.org/10.1016/j.engstruct.2019.109612

Anderson, T. L. (2017), “Fracture mechanics: fundamentals and applications (4th ed.)”. CRC Press, Florida, USA, p. 684.

Aroni, S., de Groot, G. J., Robinson, M. J., Svanholm, G., Witttman, F. H. (1993), “Autoclaved Aerated Concrete - Properties, Testing and Design”. RILEM Technical Committees 78-MCA and 51-ALC. Tayor & Francis, UK, p. 424. https://doi.org/10.1201/9781482271195

ASTM International. (2001), ASTM C1006-84 Standard Specification for Splitting Tensile Strength of Masonry Units. https://www.astm.org/c1006-84r01.html

ASTM International. (2017), ASTM C1693-11 Standard Specification for Autoclaved Aerated Concrete (AAC). https://www.astm.org/c1693-11.html

ASTM International. (2018), ASTM C1660-10 Standard Specification for Thin-bed Mortar for Autoclaved Aerated Concrete (AAC) Masonry. https://www.astm.org/c1660-10.html

ASTM International. (2022), ASTM E519/E519M-22 Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. https://www.astm.org/e0519_e0519m-22.html

Borah, B., Kaushik, H. B., Singhal, V. (2023), Analysis and Design of Confined Masonry Structures: Review and Future Research Directions. Buildings. 13(5):1282.

https://doi.org/10.3390/buildings13051282

Costa, A. A., Penna, A., Magenes, G. (2011), Seismic performance of autoclaved aerated concrete (AAC) masonry: from experimental testing of the in-plane capacity of walls to building response simulation. Journal of Earthquake Engineering. 15(1): 1-31.

https://doi.org/10.1080/13632461003642413

D’altri, A. M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Talli, A., Castellazzi, G., De Miranda, S. (2020), Modeling strategies for the computational analysis of unreinforced masonry structures: review and classification. Archives of Computational Methods in Engineering. 27(4): 1153-1185. https://doi.org/10.1007/s11831-019-09351-x

DIANA FEA BV (2025), “User’s Manual DIANA 10.10”. Netherlands. https://dianafea.com/diana-manuals/

Fernández, L. E., Ayala, G. (2004), Constitutive modeling of discontinuities by means of discrete and continuum approximations and damage models. International Journal of Solids and Structures. 41(5-6): 1453-1471. https://doi.org/10.1016/j.ijsolstr.2003.10.010

Fernández-Baqueiro, L. E., Chim-May, R. U., Varela-Rivera, J. L., Moreno-Herrera, J. A., Parra-Cardeña, R. G. (2021), “Comportamiento a cortante de muros confinados de concreto celular de autoclave” en: Memorias del XXII Congreso Nacional de Ingeniería Estructural, Aguascalientes, México, p. 14.

Fernández-Baqueiro, L. E., Moreno-Herrera, J. A., Varela-Rivera, J. L., Pérez-Buenfil, D. S., Cruz-Escareño, E. E. (2022), “Propiedades mecánicas del concreto celular de autoclave” en: Memorias del XXIII Congreso Nacional de Ingeniería Estructural, Zacatecas, México, p. 10.

Ferretti, D., Michelini, E., Rosati, G. (2015), Mechanical characterization of autoclaved aerated concrete masonry subjected to in-plane loading: Experimental investigation and FE modeling. Construction and Building Materials. 98:353-365.

http://dx.doi.org/10.1016/j.conbuildmat.2015.08.121

GCM – Gobierno de la Ciudad de México. (2023). NTCM: Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Mampostería. Ciudad de México, México.

Hamid, A. (2018), “Masonry structures: behavior and design (4th ed.)”. The Masonry Society, Colorado, USA, p. 723.

Jasinski, R., Drobiec, L. (2016), Comparison research of bed joints construction and bed joints reinforcement on shear parameters of AAC masonry walls. Journal of Civil Engineering and Architecture.10(12):1329-1343. https://www.davidpublisher.com/index.php/Home/Article/index?id=29682.html

Jasinsk,i R., Gasiorowski, T. (2023), Comparative Studies of the Confined Effect of Shear Masonry Walls Made of Autoclaved Aerated Concrete Masonry Units. Materials. 16 (17): 5885. https://doi.org/10.3390/ma16175885

Lourenço P. B., Rots J. G., Blaauwendraad, J. (1998), Continuum Model for Masonry: Parameter Estimation and Validation. Journal of Structural Engineering. ASCE.124(6):642–652.

https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(642)

Marques, R., Lourenço, P. (2019), Structural behaviour and design rules of confined masonry walls: Review and proposals. Construction and Building Materials. 127:137-155. https://doi.org/10.1016/j.conbuildmat.2019.04.266

Malyszko L., Kowalska E., Bilko P. (2017), Splitting tensile behavior of autoclaved aerated concrete: Comparison of different specimens’ results. Construction and Building Materials. 157:1190–1198. https://doi.org/10.1016/j.conbuildmat.2017.09.167

Milanesi R., Morandi P., Magenes G., Binici B. (2015), “FEM simulation of the experimental response of AAC masonry infills in RC frames” en: 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Isla de Creta, Grecia. https://www.eccomasproceedia.org/conferences/thematic-conferences/compdyn-2015/3711

Olivella, X. O., Aleget de Saracíbar, C. (2002), “Mecánica de medios continuos para ingenieros”. Ediciones UPC, Barcelona, España.

ONNCCE - Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación. (2010). NMX-C-464-ONNCCE Industria de la Construcción - Mampostería - Determinación de la Resistencia a Compresión Diagonal y Módulo de Cortante de Muretes, así como Determinación de la Resistencia a Compresión y Módulo de Elasticidad de Pilas de Mampostería de Arcilla o de Concreto - Métodos de Ensayo. Ciudad de México, México.

Parker, C. K., Tanner, J. E., Varela, J. L. (2007), Evaluation of ASTM Methods to Determine Splitting Tensile Strength in Concrete, Masonry, and Autoclaved Aerated Concrete. Journal of ASTM International. 4(2):62-73. https://www.researchgate.net/publication/333701275

Pérez, D. S. (2019). Análisis de las propiedades mecánicas del concreto celular de autoclave. Tesis de Maestría, Universidad Autónoma de Yucatán, México.

Riahi, Z., Elwood, K. J., Alcocer, S. M. (2009), Backbone model for confined masonry walls for performance-based seismic design. Journal of structural engineering. 135(6): 644-654.

https://doi.org/10.1061/(ASCE)ST.1943-541X.0000012

SENCICO - Servicio Nacional de Capacitación para la Industria de la Construcción. (2018). Norma Técnica E.070 Albañilería. Lima, Perú.

Shi, Z., Nakano, M., Nakamura, Y., Liu, C. (2014), Discrete crack analysis of concrete gravity dams based on the known inertia force field of linear response analysis. Engineering Fracture Mechanics. 115:122 -136. http://dx.doi.org/10.1016/j.engfracmech.2013.10.020

TMS - The Masonry Society. (2022). TMS 402/602: Building Code Requirements and Specification for Masonry Structures (Formerly ACI 530). Colorado, USA.

van Boggelen, W. (2018), History of Autoclaved Aerated Concrete. The short story of a long lasting building material. AAC worldwide.

https://www.aircrete.com/aircrete-news/history-of-autoclaved-aerated-concrete-2/

Varela-Rivera, J., Fernandez-Baqueiro, L., Alcocer-Canche, R., Ricalde-Jimenez, J., Chim- May, R. (2018), Shear and flexural behavior of autoclaved aerated concrete confined masonry walls. ACI Structural Journal. 115(5):1453-1462.

https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=51706828

Varela-Rivera, J. L., Fernández-Baqueiro, L. E., Moreno-Herrera, J. A. (2023), Shear and flexural behavior of autoclaved aerated concrete confined masonry walls. ACI Structural Journal. 120(3):207-215. https://doi.org/10.14359/51738511

Varela-Rivera, J. L., Cacep-Rodríguez, J., Fernández-Baqueiro, L. E., Moreno-Herrera, J. A. (2024), Comportamiento a cortante de muros de mampostería confinada de concreto celular de autoclave con diferentes escalas. Revista ALCONPAT. 14(2):157-173.

https://doi.org/10.21041/ra.v14i2.725

Varela-Rivera, J. L., Cacep-Rodríguez, J., Fernández-Baqueiro, L. E., Moreno-Herrera, J. A. (2025), Shear Strength of Coupled Autoclaved Aerated Concrete Confined Masonry Walls. Journal of Structural Engineering. ASCE. 151(3):04024222. https://doi.org/10.1061/JSENDH.STENG-13764

Wittmann, F. H., Gheorghita, I. (1984), Fracture toughness of autoclaved aerated concrete. Cement and Concrete Research. 14(3): 369-374. https://doi.org/10.1016/0008-8846(84)90055-3

Published
2025-09-01
How to Cite
Fernández-Baqueiro, L., Ceballos-Pérez, L., Moreno-Herrera, J., & Varela-Rivera, J. (2025). Computational modeling of cracking in autoclaved aerated concrete blocks and masonry wallets. Revista ALCONPAT, 15(3), 230 - 248. https://doi.org/10.21041/ra.v15i3.800