Modelo basado en YOLOv8 para la detección automática de daños en tejados residenciales

  • Alisson Souza Silva Federal University of Bahia
  • Arthur Rios de Azevedo Federal University of Bahia
  • Fernando Humberto de Almeida Moraes Neto Federal University of Bahia
  • Paulo Henrique Ferreira da Silva Federal University of Bahia
Keywords: maintenance management, machine learning, You Only Look Once (YOLO), roof inspection, rooftop assessment

Abstract

This study developed an automated image recognition model for inspecting residential roofs using the YOLOv8 architecture to identify three types of damage. The methodology involved images from 167 buildings captured by drones and annotated in CVAT, which were used to train and test the model. YOLOv8 was applied for anomaly detection and classification, achieving 79% precision. The limitations were the small dataset and the limited variety of capture angles. The originality of the work lies in the innovative use of YOLOv8 for roof inspection. Future research will focus on developing the YOLOv9 and YOLOv10 architectures and expanding the dataset and damage classes.

Downloads

Download data is not yet available.

References

Alashari, M., El-Rayes, K., Attalla, M., Al-Ghzawi, M. (2022). Multivariate time series and regression models for forecasting annual maintenance costs of EPDM roofing systems. Journal of Building Engineering, 54, 104618. DOI: https://doi.org/10.1016/j.jobe.2022.104618

Alizadeh, M., Ma, J. (2021). A comparative study of series hybrid approaches to model and predict the vehicle operating states. Computers & Industrial Engineering, 162, 107770. https://doi.org/10.1016/j.cie.2021.107770 DOI: https://doi.org/10.1016/j.cie.2021.107770

Alzarrad, A., Awolusi, I., Hatamleh, M. T., Terreno, S. (2022). Automatic assessment of roofs conditions using artificial intelligence (AI) and unmanned aerial vehicles (UAVs). Frontiers in Built Environment, 8, 1026225. DOI: https://doi.org/10.3389/fbuil.2022.1026225

Avola, D., Cascio, M., Cinque, L., Fagioli, A., Foresti, G. L., Marini, M. R., Rossi, F. (2022). Real-time deep learning method for automated detection and localization of structural defects in manufactured products. Computers & Industrial Engineering, 172, 108512. https://doi.org/10.1016/j.cie.2022.108512 DOI: https://doi.org/10.1016/j.cie.2022.108512

Brown, S., Harris, W., Brooks, R. D., Dong, X. S. (2021). Fatal injury trends in the construction industry.

Cao, Y., Pang, D., Zhao, Q., Yan, Y., Jiang, Y., Tian, C., Li, J. (2024). Improved yolov8-gd deep learning model for defect detection in electroluminescence images of solar photovoltaic modules. Engineering Applications of Artificial Intelligence, 131, 107866. DOI: https://doi.org/10.1016/j.engappai.2024.107866

Chu, J. C., Shui, C. S., & Lin, K. H. (2024). Optimization of trucks and drones in tandem delivery network with drone trajectory planning. Computers & Industrial Engineering, 189, 110000. https://doi.org/10.1016/j.cie.2024.110000 DOI: https://doi.org/10.1016/j.cie.2024.110000

Conceição, J., Poça, B., De Brito, J., Flores-Colen, I., Castelo, A. (2017). Inspection, diagnosis, and rehabilitation system for flat roofs. Journal of Performance of Constructed Facilities, 31(6), 04017100. DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0001094

Dang, L. M., Kyeong, S., Li, Y., Wang, H., Nguyen, T. N., Moon, H. (2021). Deep learning-based sewer defect classification for highly imbalanced dataset. Computers & Industrial Engineering, 161, 107630. https://doi.org/10.1016/j.cie.2021.107630 DOI: https://doi.org/10.1016/j.cie.2021.107630

Fan, C. L. (2024). Using convolutional neural networks to identify illegal roofs from unmanned aerial vehicle images. Architectural Engineering and Design Management, 20(2), 390-410. DOI: https://doi.org/10.1080/17452007.2023.2244949

Gajjar, D., Burgett, J. (2020). Evaluating the Use of Unmanned Aerial Systems (UAS) to Perform Low-Slope Roof Inspections. EPiC Series in Built Environment, 1, 214-222. DOI: https://doi.org/10.29007/jknh

Garcez, N., Lopes, N., de Brito, J., Silvestre, J. (2012). System of inspection, diagnosis and repair of external claddings of pitched roofs. Construction and Building Materials, 35, 1034-1044. DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.047

Han, S., Park, W., Jeong, K., Hong, T., Koo, C. (2024). Utilizing synthetic images to enhance the automated recognition of small-sized construction tools. Automation in Construction, 163, 105415. https://doi.org/10.1016/j.autcon.2024.105415 DOI: https://doi.org/10.1016/j.autcon.2024.105415

Hou, M., Hao, W., Dong, Y., Ji, Y. (2023). A detection method for the ridge beast based on improved YOLOv3 algorithm. Heritage Science, 11(1), 167. https://doi.org/10.1186/s40494-023-00995-4 DOI: https://doi.org/10.1186/s40494-023-00995-4

Jiang, D., Kong, L., Wang, H., Pan, D., Li, T., Tan, J. (2024). Precise control mode for concrete vibration time based on attention-enhanced machine vision. Automation in Construction, 158, 105232. https://doi-org/10.1016/j.autcon.2023.105232 DOI: https://doi.org/10.1016/j.autcon.2023.105232

Koubaa, A., Ammar, A., Kanhouch, A., AlHabashi, Y. (2021). Cloud versus edge deployment strategies of real-time face recognition inference. IEEE Transactions on Network Science and Engineering, 9(1), 143-160. https://doi.org/10.1109/TNSE.2021.3055835 DOI: https://doi.org/10.1109/TNSE.2021.3055835

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Wei, X. (2022). YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976. https://doi.org/10.48550/arXiv.2209.02976

Published
2025-01-01
How to Cite
Silva, A. S., Arthur Rios de Azevedo, Fernando Humberto de Almeida Moraes Neto, & Paulo Henrique Ferreira da Silva. (2025). Modelo basado en YOLOv8 para la detección automática de daños en tejados residenciales. Revista ALCONPAT, 15(1), 50 -. https://doi.org/10.21041/ra.v15i1.783