Defect detection using YOLOv8 for determining the condition of asphalt pavements

  • Átila Marconcine de Souza UEL
  • Carlos Eduardo de Oliveira Universidade Estadual de Londrina
  • Pedro Henrique Bruder Decker Universidade Estadual de Londrina
  • Ana Lídia da Silva Cascales Corrêa Universidade Estadual de Londrina
  • Giorgie Eduardo Rodrigues Amorim Universidade Estadual de Londrina
  • Heliana Barbosa Fontenele Universidade Estadual de Londrina
Keywords: automation, algorithm, image, computer vision, object detection

Abstract

This study aimed to evaluate the capacity of the YOLOv8 algorithm to detect potholes, patches, and cracks. To achieve this, a section of a highway was recorded, manually evaluated in the field, and compared with a semi-automatic evaluation based on video processing by the model. The model yielded different results from those obtained through field assessment. Although only a portion of the Maintenance Condition Index is used in the assessment, this marks the first use of an index integrated with YOLOv8. Thus, it is concluded that the model requires further improvements to become viable for definitive application.

Downloads

Download data is not yet available.

References

Chunlong, Z., Peile, H., Shenghuai, W., Chen, W., Hongxia, W. (2024). Pavement Defect Detection Algorithm Based on Improved YOLOv7 Complex Background. IEEE Access, 12, 32870–32880. https://doi.org/10.1109/ACCESS.2024.3370604 DOI: https://doi.org/10.1109/ACCESS.2024.3370604

Confederação Nacional dos Transportes (CNT). (2023). Pesquisa CNT de Rodovias 2023. Disponível em: https://agenciadenoticias.ms.gov.br/wp-content/uploads/2024/01/pesquisa_cnt_rodovias_2024_relatorio_gerencial.pdf. Accessed on: May 6, 2024.

Departamento Nacional de Infraestrutura de Transportes. (2024). Condições do Pavimento em março/2024. Disponível em: https://servicos.dnit.gov.br/dadosabertos/dataset/condicoes-do-pavimento/resource/030e374d-a505-4d16-a283-610a29008746. Accessed on: May 6, 2024.

Departamento Nacional de Infraestrutura de Transportes. (2024). Resolução nº 5/2022, de 27 de abril de 2022. Disponível em: https://www.gov.br/dnit/pt-br/central-de-conteudos/atos-normativos/tipo/resolucoes/resolucao-5-2022-dir-ba-080-de-29-04-2022.pdf. Accessed on: April 8, 2024.

Du, F. J., Jiao, S. J. (2022). Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection. Sensors, 22(9). https://doi.org/10.3390/s22093537 DOI: https://doi.org/10.3390/s22093537

Ju, R. Y., Cai, W. (2023). Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47460-7 DOI: https://doi.org/10.1038/s41598-023-47460-7

El Hakea, A. H., Fakhr, M. W. (2023). Recent computer vision applications for pavement distress and condition assessment. In Automation in Construction (Vol. 146). Elsevier B.V. https://doi.org/10.1016/j.autcon.2022.104664 DOI: https://doi.org/10.1016/j.autcon.2022.104664

Gonçalves, M., Marques, T., Gaspar, P. D., Soares, V. N. G. J., Caldeira, J. M. L. P. (2023). Road Pavement Damage Detection using Computer Vision Techniques: Approaches, Challenges and Opportunities. Revista de Informatica Teorica e Aplicada, 30(2), 22–35. https://doi.org/10.22456/2175-2745.129787 DOI: https://doi.org/10.22456/2175-2745.129787

Published
2025-01-01
How to Cite
Marconcine de Souza, Átila, Eduardo de Oliveira, C., Henrique Bruder Decker, P., da Silva Cascales Corrêa, A. L., Eduardo Rodrigues Amorim, G., & Barbosa Fontenele, H. (2025). Defect detection using YOLOv8 for determining the condition of asphalt pavements. Revista ALCONPAT, 15(1), 79 - 91. https://doi.org/10.21041/ra.v15i1.781