Compressive strength and microstructural evolution of metakaolin geopolymers exposed at high temperature

  • O. Burciaga-Díaz Ingenieria Cerámica, Cinvestav IPN Unidad Saltillo, Av. Industria Metalúrgica No. 1062, Parque Industrial Ramos Arizpe, Coahuila, México
  • J. I. Escalante-García Centro de Investigación y de Estudios Avanzados del IPN Unidad Saltillo, Carretera Saltillo - Monterrey km 13, PO box 663, Saltillo, Cohauila CP 25 000, México
  • R. X. Magallanes-Rivera Materiales de construcción, UANL Fac. de Ing. Civil, Av.Universidad s/n, Cd. Universitaria San Nicolás de los Garza, Nuevo León
Keywords: Geopolymers, metakaolin, thermal performance, compressive strength, microstructures.

Abstract

This research presents results of compressive strength and microstructural evolution of geopolymer pastes exposed to high temperatures. Pastes of molar composition SiO2/Al2O3 (2.6-3.0), Na2O/Al2O3 (0.55 to 0.7), and H2O/solid (0.53 to 0.57) were elaborated blending metakaolin and sodium silicate solutions containing NaOH. The effect of the chemical composition on the development of compressive strength was investigated, and 3 pastes with high mechanical strength were chosen to be exposed to 200, 500 and 800 ° C, characterizing their microstructural evolution and compressive strength. Before to high temperature exposure, the geopolymers developed of up to 80MPa, and after their exposition, the loss of strength was strongly depended of the ratio SiO2/Al2O3. Results of X-ray diffraction, Infrared Spectroscopy and Scanning Electron Microscopy, suggest that the reorganization of the silica gel and the evaporation of water from the microstructures, reduce the thermal stability of geopolymers exposed to high temperature.

Downloads

Download data is not yet available.

References

Barbosa, V. F. F., MacKenzie, K. J .D. (2003), “Thermal behavior of inorganic geopolymers and composities derived from sodium polysialate†Materials Research Bulletin, V. 38, No. 2, pp. 319-331.

Burciaga-Díaz, O., Escalante-García, J. I. (2010), “Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cementsâ€, Journal of the American Ceramic Society, Vol. 93 No. 2, pp. 541-547.

Burciaga-Díaz, O., Escalante-Garcia, J. I., Gorokhovsky, A. (2012 A), “Geopolymers based on a coarse low-purity kaolin mineral: Mechanical strength as a function of the chemical composition and temperatureâ€, Cement and Concrete Composites, V. 34, pp. 18-24.

Burciaga-Díaz, O., Escalante-Garcia, J. I. (2012 B),“Strength and durability in acid media of alkali silicate-activated metakaolin geopolymersâ€, Journal of the American Ceramic Society, V. 95, No. 7, pp. 2307-2313.

Criado, M., Jiménez, A. F., Palomo, A. (2007), “Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Prt I: FTIR studyâ€. Micoporous and Mesoporous Materials, V. 106, pp. 180-191.

Duxson, P., Lukey, G. C. and van Deventer, J. S. J. (2006 A), “Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolutionâ€. Journal of Non-crystalline Solids, V. 352, pp. 2186–2200.

Duxson, P. (February 2006 B),“The Structure and thermal evolution of metakaolin geopolymers†PhD thesis. University of Melbourne.

Duxson, P., Lukey, G. C., Van Deventer, J. S. J. (2007), “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°Câ€, Journal of Materials Science, V.42, No. 9, pp. 3044.

Kong, D. L. Y., Sanjayan, J. G., Sagoe-Crentsil, K. (2007), “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperaturesâ€. Cement and Concrete Research, V. 37, No. 12, pp.1583–1589.

Kong, D. L. Y., Sanjayan, J. G., Sagoe-Crentsil, K. (2008), “Factors affecting the performance of metakaolin geopolymers exposed to elevated temperaturesâ€, Journal of Materials Science, V. 43, pp. 824-831.

Lee, W. K. W. Van Deventer J. S. J. (2003),“Use of Infrared Spectroscopy to Study Geopolymerization of Heterogeneous Amorphous Aluminosilicates†Langmuir, V. 19, pp. 8726–34.

McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., Corder, G. D. (2011), “Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cementâ€, Journal of Cleaner Production, V.19, pp.1080–90.

Pacheco-Torgal, F. Labrincha, J. A. Leonelli, C. Palomo, A. Chindaparasirt, P. (2014), “Handbook of Alkali-activated Cements, Mortars and Concretesâ€, (Sawston, Cambridge UK: Woodhead Publishing Ltd), p. 852.

Palomo, A., Krivenko, P., García-Lodeiro, E., Maltseva, O., Fernandez-

Jimenez, A. (2014), “A review on alkaline activation: new analytical perspectivesâ€. Materiales de Construcción, Vol. 64, Issue 315, pp. 24.

Pan, Z, Sanjayan J. G. (2010), “Stress–strain behaviuor and abrupt loss of stiffness of geopolymer at elevated temperaturesâ€. Cement and Concrete Composites, V. 32, No. 9, pp.657–64.

Provis, J., Van Deventer, J. (2009), “Geopolymers: structure, processing properties and industrial applicationsâ€. (Sawston, Cambridge UK: Woodhead Publishing Ltd)., p. 441.

Provis, J. L., Van Deventer, J. S. J. (2014), “Alkali-Activated

Materials. State-of-the-Art Report, RILEM TC224-AAMâ€, (Springer Dordrecht Heidelberg New York London), p. 388.

Rahier, H., Simons, W., Van Mele, B., Biesemans. (1997), “Low temperature synthesized aluminosilictae glasses: Part III influence of the composition of silicate solution on production, structure and propertiesâ€, Journal of Materials Science, V. 32, No. 9. pp. 2237-2247.

Rovnaník, P., (2010), “Effect of the curing temperature on the development of hard structure of metakaolin based geopolymersâ€, Construction and Building Materials, V. 24. pp. 1176-1183.

Temuujin,J., Ricard, W., Lee, M., Van Riessen, A. (2011), “Preparation and thermal properties of fire resistant metakaolin-based Geopolymer-type coatingâ€. Journal of Non-Crystalline Solids, V. 357, pp.1399-1404.

Published
2015-01-30
How to Cite
Burciaga-DíazO., Escalante-GarcíaJ. I., & Magallanes-Rivera, R. X. (2015). Compressive strength and microstructural evolution of metakaolin geopolymers exposed at high temperature. Revista ALCONPAT, 5(1), 58 - 72. https://doi.org/10.21041/ra.v5i1.77
Section
Basic Research