Comparison of mechanical behavior of slabs reinforced with GFRP and steel

  • Roberto Christ Department of Civil and Environmental, Universidad de la Costa
  • Hinoel Z. Ehrenbring Polytechnical School, UNISINOS University, São Leopoldo, 93040-230, Brazil.
  • Fernanda Pacheco Polytechnical School, UNISINOS University, São Leopoldo, 93040-230, Brazil.
  • Diego Schneider Polytechnical School, UNISINOS University, São Leopoldo, 93040-230, Brazil.
  • Bernardo F. Tutikian Polytechnical School, UNISINOS University, São Leopoldo, 93040-230, Brazil.
  • Gian de Fraga Moreira Polytechnical School, UNISINOS University, São Leopoldo, 93040-230, Brazil.
  • Leandro Wegher Civil engineering and is the CEO for te Composit Group Brasil, Chapecó, 89801-000, Brazil.
  • Oleg Beliaev
Keywords: GFRP; reinforced concrete; slabs; flexural tensile; mechanical behavior

Abstract

The objective of this study is to evaluate the mechanical behavior of GRFP in massive concrete slabs. The use of glass fiber reinforced polymer (GFRP) rebars in construction design has been an alternative technique to provide more durable structures. However, there is a need to evaluate the behavior of GFRP reinforced slabs under flexure and to compare the service state (SS) and ultimate service state (USS) of the loaded element. Thus, reinforced concrete slabs of varying thicknesses were constructed with steel and GFRP rebars. Results show that the applied load for maximum span deflection of the GFRP slab under SS was 50% lower than for the one with steel reinforcement. The maximum span deflection of the GFRP slab under USS was also 282% larger than for steel rebars reinforcement.

Downloads

Download data is not yet available.

References

American Concrete Institute (2015), ACI 440.1R-15 - Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. Farmington Hills: Reported by ACI Committee 440. DOI: https://doi.org/10.1061/40753(171)158

ASTM International (2020), ASTM C143/20 - Standard Test Method for Slump of Hydraulic-Cement Concrete. West Conshohocken, PA.

Ahmed, A., Guo, S., Zhang, Z., Shi, C., Zhu, D. (2020), A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete. Construction and Building Materials, v. 256, p. 119484. https://doi.org/10.1016/j.conbuildmat.2020.119484 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119484

Arczewska, P.; Polak, M. A.; Penlidis, A. (2021), Degradation of glass fiber reinforced polymer (GFRP) bars in concrete environment. Construction and Building Materials, v. 293, p. 123451. https://doi.org/10.1016/j.conbuildmat.2021.123451 DOI: https://doi.org/10.1016/j.conbuildmat.2021.123451

Ashour, A. F. (2006), Flexural and shear capacities of concrete beams reinforced with GFRP bars. Construction and Building Materials, v. 20, n. 10, p. 1005–1015. https://doi.org/10.1016/j.conbuildmat.2005.06.023 DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.023

Bondaletova, L. I., Bondaletov, V. G. (2013), Polymer Composite Materials, p. 11-13 (in Russian).

Bakouregui, A. S., Mohamed, H. M., Yahia, A., Benmokrane, B. (2021), Explainable extreme gradient boosting tree-based prediction of load-carrying capacity of FRP-RC columns. Engineering Structures, v. 245, n. January, p. 112836. https://doi.org/10.1016/j.engstruct.2021.112836 DOI: https://doi.org/10.1016/j.engstruct.2021.112836

BARRIS, C., Torres, L., Comas, J., Miàs, C. (2013), Cracking and deflections in GFRP RC beams: An experimental study. Composites Part B: Engineering, v. 55, p. 580–590. https://doi.org/10.1016/j.compositesb.2013.07.019 DOI: https://doi.org/10.1016/j.compositesb.2013.07.019

Chu, K.; Hossain, K. M. A.; Lachemi, M. (2020), Fatigue behavior of GFRP-reinforced ECC link slabs under variable stress levels and number of cycles. Engineering Structures, v. 222, n. December 2019. https://doi.org/10.1016/j.engstruct.2020.111130 DOI: https://doi.org/10.1016/j.engstruct.2020.111130

Ebead, U.; Marzouk, H. (2004), Fiber-reinforced polymer strengthening of two-way slabs. ACI Structural Journal, v. 101, n. 5, p. 650–659. https://doi.org/10.14359/13387 DOI: https://doi.org/10.14359/13387

Erfan, A. M., Abd Elnaby, R. M., Aziz Badr, A., El-sayed, T. A. (2021), Flexural behavior of HSC one way slabs reinforced with basalt FRP bars. Case Studies in Construction Materials, v. 14, p. 1–17. https://doi.org/10.1016/j.cscm.2021.e00513 DOI: https://doi.org/10.1016/j.cscm.2021.e00513

Fakoor, M.; Nematzadeh, M. (2021), A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures. Construction and Building Materials, v. 278, p. 122340. https://doi.org/10.1016/j.conbuildmat.2021.122340 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122340

Gajdosová, K., Sonnenschein, R., Blaho, S., Kinceková, S., Pecka, J. (2020), Durability of FRP Reinforcements and Long-Term Properties. Slovak Journal of Civil Engineering, v. 28, n. 2, p. 50–55. https://doi.org/10.2478/sjce-2020-0015 DOI: https://doi.org/10.2478/sjce-2020-0015

Gao, D., Fang, D., You, P., Chen, G., Tang, J. (2020), Flexural behavior of reinforced concrete one-way slabs strengthened via external post-tensioned FRP tendons. Engineering Structures, v. 216, p. 110718. https://doi.org/10.1016/j.engstruct.2020.110718 DOI: https://doi.org/10.1016/j.engstruct.2020.110718

Gonilha, J. A.; Correia, J. R.; Branco, F. A. (2013), Creep response of GFRP-concrete hybrid structures: Application to a footbridge prototype. Composites Part B: Engineering, v. 53, p. 193–206. https://doi.org/10.1016/j.compositesb.2013.04.054 DOI: https://doi.org/10.1016/j.compositesb.2013.04.054

Gravina, R. J., Li, J., Smith, S. T., Visintin, P. (2020), Environmental Durability of FRP Bar-to-Concrete Bond: Critical Review. Journal of Composites for Construction, v. 24, n. 4, p. 03120001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001016 DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0001016

Jabbar, S. A. A.; Farid, S. B. H. (2018), Replacement of steel rebars by GFRP rebars in the concrete structures. Karbala International Journal of Modern Science, v. 4, n. 2, p. 216–227. https://doi.org/10.1016/j.kijoms.2018.02.002 DOI: https://doi.org/10.1016/j.kijoms.2018.02.002

Kaszubska, M.; Kotynia, R.; Barros, J. A. O. (2017), Influence of Longitudinal GFRP Reinforcement Ratio on Shear Capacity of Concrete Beams without Stirrups. Procedia Engineering, v. 193, p. 361–368. https://doi.org/10.1016/j.proeng.2017.06.225 DOI: https://doi.org/10.1016/j.proeng.2017.06.225

Mahroug, M. E. M.; Ashour, A. F.; Lam, D. (2014), Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars. Composite Structures, v. 107, p. 664–674. https://doi.org/10.1016/j.compstruct.2013.08.029 DOI: https://doi.org/10.1016/j.compstruct.2013.08.029

Manalo, A., Maranan, G., Benmokrane, B., Cousin, P., Alajarmeh, O., Ferdous, W., Liang, R., Hota, G., (2020), Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments, Cement and Concrete Composites, Volume 109, 103564, ISSN 0958-9465, https://doi.org/10.1016/j.cemconcomp.2020.103564 DOI: https://doi.org/10.1016/j.cemconcomp.2020.103564

Miàs, C., Torres, L., Turon, A., Sharaky, I. A. (2013), Effect of material properties on long-term deflections of GFRP reinforced concrete beams. Construction and Building Materials, v. 41, p. 99–108. https://doi.org/10.1016/j.conbuildmat.2012.11.055 DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.055

Miàs, C., Torres, L., Turon, A. (2015), Short and long-term cracking behaviour of GFRP reinforced concrete beams. Composites Part B: Engineering, v. 77, p. 223–231, 2015. https://doi.org/10.1016/j.compositesb.2015.03.024 DOI: https://doi.org/10.1016/j.compositesb.2015.03.024

Najafabadi, E. P., Bazli, M., Ashrafi, H., Oskouei, A. V. (2018), Effect of applied stress and bar characteristics on the short-term creep behavior of FRP bars, Construction and Building Materials, Volume 171, Pages 960-968, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.03.204 DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.204

Noël, M.; Soudki, K. (2014), Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement. Engineering Structures, v. 59, p. 393–398. https://doi.org/10.1016/j.engstruct.2013.11.005 DOI: https://doi.org/10.1016/j.engstruct.2013.11.005

Peled, A., Bentur, A., Yankelevsky, D. Z. (1998), The nature of bonding between monofilament polyethylene yarns and cement matrices. Cement and Concrete Composites, v. 20, n. 4, p. 319–327. https://doi.org/10.1016/S0958-9465(98)00007-9 DOI: https://doi.org/10.1016/S0958-9465(98)00007-9

Rosa, I. C., Santos, P., Firmo, J. P., Correia, J. R. (2020), Fire behaviour of concrete slab strips reinforced with sand-coated GFRP bars. Composite Structures, v. 244, n. December 2019, p. 112270. https://doi.org/10.1016/j.compstruct.2020.112270 DOI: https://doi.org/10.1016/j.compstruct.2020.112270

Sadraie, H.; Khaloo, A.; Soltani, H. (2019), Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading. Engineering Structures, v. 191, n. December 2018, p. 62–81. https://doi.org/10.1016/j.engstruct.2019.04.038 DOI: https://doi.org/10.1016/j.engstruct.2019.04.038

Satasivam, S., Bai, Y., Yang, Y., Zhu, L., Zhao, X.-L. (2018), Mechanical performance of two-way modular FRP sandwich slabs. Composite Structures, v. 184, n. September 2017, p. 904–916, https://doi.org/10.1016/j.compstruct.2017.10.026 DOI: https://doi.org/10.1016/j.compstruct.2017.10.026

Shi, J., Wang, X., Wu, Z., Zhu, Z. (2015), Creep behavior enhancement of a basalt fiber-reinforced polymer tendon. Construction and Building Materials, v. 94, p. 750–757, https://doi.org/10.1016/j.conbuildmat.2015.07.118 DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.118

Shi, X., Park, P., Rew, Y., Huang, K., Sim, C. (2020), Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension, Construction and Building Materials, Volume 233, 117316, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2019.117316 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117316

Starkova, O., Buschhorn, S. T., Mannov, E., Schulte, K., Aniskevich, A. (2012), Creep and recovery of epoxy/MWCNT nanocomposites, Composites Part A: Applied Science and Manufacturing, Volume 43, Issue 8, Pages 1212-1218, ISSN 1359-835X, https://doi.org/10.1016/j.compositesa.2012.03.015. DOI: https://doi.org/10.1016/j.compositesa.2012.03.015

Wang, X., Shi, J., Liu, J., Yang, L., Wu, Z. (2014), Creep behavior of basalt fiber reinforced polymer tendons for prestressing application. Materials and Design, v. 59, p. 558–564, https://doi.org/10.1016/j.matdes.2014.03.009 DOI: https://doi.org/10.1016/j.matdes.2014.03.009

Zhang, P., Hu, R., Zou, X., Liu, Y., Li, Q., Wu, G., Sheikh, S. A. (2021), Experimental study of a novel continuous FRP-UHPC hybrid beam, Composite Structures, Volume 261, 113329, ISSN 0263-8223, https://doi.org/10.1016/j.compstruct.2020.113329. DOI: https://doi.org/10.1016/j.compstruct.2020.113329

Zheng, Y., Yu, G., Pan, Y. (2012), Investigation of ultimate strengths of concrete bridge deck slabs reinforced with GFRP bars. Construction and Building Materials, v. 28, n. 1, p. 482–492. https://doi.org/10.1016/j.conbuildmat.2011.09.002 DOI: https://doi.org/10.1016/j.conbuildmat.2011.09.002

Published
2024-09-01
How to Cite
Christ, R., Ehrenbring, H. Z., Pacheco, F., Schneider, D., Tutikian, B. F., Moreira, G. de F., Wegher, L., & Beliaev, O. (2024). Comparison of mechanical behavior of slabs reinforced with GFRP and steel. Revista ALCONPAT, 14(3), 224 -. https://doi.org/10.21041/ra.v14i3.759