Water content modifies the structural development of sodium metasilicate-activated slag binders

  • S. A. Bernal Department of Materials Science & Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom
  • R. San Nicolas Department of Infrastructure Engineering, University of Melbourne, Victoria 3010, Australia
  • J. S. J. Van Deventer Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012, Australia
  • J. L. Provis Department of Materials Science & Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom
Keywords: alkali-activated slag, water content, calorimetry, X-ray diffraction

Abstract

The effect of modifying the water content of an alkali-activated slag binder was assessed, in terms of the kinetics of reaction and the structural development of the material. There is not a systematic correlation between the water content of the mix and the rate of reaction, indicating that there is an optimal value that favours dissolution of the slag and precipitation of reaction products. A higher water content reduced the crystallinity and density of the reaction products, especially at advanced age. Small changes in the water content can have a significant impact on the compressive strength development of alkali-silicate activated slag mortars, suggesting that when producing materials based on alkali-activated binders, it is essential to carefully control the water content.

Downloads

Download data is not yet available.

References

Bellmann F., Damidot, D., Möser, B., Skibsted, J. (2010), Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate, Cement and Concrete Research 40, pp. 875-884.

Ben Haha M., Le Saout, G., Winnefeld, F., Lothenbach, B. (2011), Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cement and Concrete Research 41, pp. 301-310.

Bernal S. A. & Provis, J. L. (2014), Durability of alkali-activated materials: progress and perspectives, Journal of the American Ceramic Society 97, pp. 997-1008.

Bernal S. A., Provis, J. L., Rose, V., Mejía De Gutiérrez, R. (2013), High-resolution X-ray diffraction and fluorescence microscopy characterization of alkali-activated slag-metakaolin binders, Journal of the American Ceramic Society 96 pp. 1951-1957.

Bernal S. A., San Nicolas, R., Myers, R. J., Mejía De Gutiérrez, R., Puertas, F., Van Deventer, J. S. J., Provis, J. L. (2014), MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cement and Concrete Research 57, pp. 33-43.

Brough A. R. & Atkinson, A. (2002), Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure, Cement and Concrete Research 32, pp. 865-879.

Bullard J. W., Jennings, H. M., Livingston, R. A., Nonat, A., Scherer, G. W., Schweitzer, J. S., Scrivener, K., Thomas, J. J. (2011), Mechanisms of cement hydration, Cement and Concrete Research 41, pp. 1208-1223.

Escalante-Garcia J., Fuentes, A. F., Gorokhovsky, A., Fraire-Luna, P. E., Mendoza-Suarez, G. (2003), Hydration products and reactivity of blast-furnace slag activated by various alkalis., Journal of the American Ceramic Society 86, pp. 2148-2153.

Famy C., Scrivener, K. L., Crumbie, A. K. (2002), What causes differences of C-S-H gel grey levels in backscattered electron images?, Cement and Concrete Research 32, pp. 1465-1471.

Fernández-Jiménez A. & Puertas, F. (1997), Alkali-activated slag cements: Kinetic studies, Cement and Concrete Research 27, pp. 359-368.

Fernández-Jiménez A., Puertas, F., Sobrados, I., Sanz, J. (2003), Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator, Journal of the American Ceramic Society 86, pp. 1389-1394.

Flatt R. J., Scherer, G. W., Bullard, J. W. (2011), Why alite stops hydrating below 80% relative humidity, Cement and Concrete Research 41, pp. 987-992.

Ismail I., Provis, J. L., Van Deventer, J. S. J., Hamdan, S. (2011), The effect of water content on compressive strength of geopolymer mortars. AES-ATEMA’ 2011 International Conference on Advances and Trends in Engineering Materials and their Applications, 4-8 Jul, Milan, Italy. CD-ROM proceedings.

Kjellsen K. O. (1996), Heat curing and post-heat curing regimes of high-performance concrete: Influence on microstructure and C-S-H composition, Cement and Concrete Research 26, pp. 295-307.

Lecomte I., Henrist, C., Liégeois, M., Maseri, F., Rulmont, A., Cloots, R. (2006), (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement, Journal of the European Ceramic Society 26, pp. 3789-3797.

Lin F. & Meyer, C. (2009), Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure, Cement and Concrete Research 39, pp. 255-265.

Provis J. L. (2014), Geopolymers and other alkali activated materials: why, how, and what?, Materials and Structures 47, pp. 11-25.

Provis J. L. & Bernal, S. A. (2014), Geopolymers and related alkali-activated materials, Annual Reviews of Materials Research 44, pp. 299-327.

Provis J. L. & Van Deventer, J. S. 2014. Alkali Activated Materials: State-of-the-art Report, RILEM TC 224-AAM, Springer Dordrecht.

Provis J. L. & Van Deventer, J. S. J. (2007), Geopolymerisation kinetics. 2. Reaction kinetic modelling, Chemical Engineering Science 62, pp. 2318-2329.

Ruiz-Santaquiteria C., Skibsted, J., Fernández-Jiménez, A., Palomo, A. (2012), Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates, Cement and Concrete Research 42, pp. 1242-1251.

San Nicolas R., Bernal, S. A., Mejía De Gutiérrez, R., Van Deventer, J. S. J., Provis, J. L. (2014), Distinctive microstructural features of aged sodium silicate-activated slag concretes, Cement and Concrete Research 65, pp. 41-51.

Scrivener K. L. (2004), Backscattered electron imaging of cementitious microstructures: understanding and quantification, Cement and Concrete Composites 26, pp. 935-945.

Shi C. 1997. Early hydration and microstructure development of alkali-activated slag cement pastes. Proceedings of the 10th International Congress on the Chemistry of Cement. Gothenburg, Sweden.

Shi C., Fernández-Jiménez, A., Palomo, A. (2011), New cements for the 21st century: The pursuit of an alternative to Portland cement, Cement and Concrete Research 41, pp. 750-763.

Wang S.-D., Scrivener, K. L., Pratt, P. L. (1994), Factors affecting the strength of alkali-activated slag, Cement and Concrete Research 24, pp. 1033-1043.

Wong H. S., Head, M. K., Buenfeld, N. R. (2006), Pore segmentation of cement-based materials from backscattered electron images, Cement and Concrete Research 36, pp. 1083-1090.

Zhang Z., Olek, J., Diamond, S. (2002), Studies on delayed ettringite formation in heat-cured mortars: II. Characteristics of cement that may be susceptible to DEF, Cement and Concrete Research 32, pp. 1737-1742.

Published
2015-01-30
How to Cite
Bernal, S. A., San Nicolas, R., Van Deventer, J. S. J., & Provis, J. L. (2015). Water content modifies the structural development of sodium metasilicate-activated slag binders. Revista ALCONPAT, 5(1), 31 - 43. https://doi.org/10.21041/ra.v5i1.75
Section
Basic Research