Microstructure and mechanical properties of composite cements: reactivity of pozzolanic and hydraulic cementitious materials

  • L. Y. Gómez-Zamorano Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Programa Doctoral en Ingeniería de Materiales
  • C. A. Iñiguez-Sánchez Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Programa Doctoral en Ingeniería de Materiales
  • B. Lothenbach EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Concrete and Construction Chemistry, Switzerland
Keywords: microstructure, reactivity, mechanical properties, industrial byproducts

Abstract

This research was focused on the use of pozzolanic and hydraulic additions as partial replacement of
Portland cement. In order to evaluate the mechanical properties, microstructure and hydration reactions of
the composite cements phases, granulated blast furnace slag, fly ash, metakaolin, and geothermal silica
were used as replacement materials. The following conditions were utilized: replacement levels of 50, 40
and 30% of the mentioned materials, a water/cementitious materials ratio of 0.4, curing temperatures of 20
and 50°C and curing intervals from 3 to 180 days. The results indicated a high degree of reactivity of
replacement materials and an increase in the mechanical properties up to 200% compared to pure cement,
resulting in a matrix of more dense reaction products and thus a reduction in porosity.
Keywords: Microstructure, reactivity, mechanical properties, industrial byproducts.

Downloads

Download data is not yet available.

References

Battagin, A. F., Camarini, G., Cincotto, M. A. (1997), “A study of early hydration of slag cement pastes subjected to thermal curing”, 10th International Congress on the Chemistry of Cement, p.3.

Bijen, J., (1996). “Benefits of slag and fly ash”, Construction and building materials. 10, p. 309. DOI: https://doi.org/10.1016/0950-0618(95)00014-3

De León Malacara, B. (2007), “Efecto de los perfiles de concentración de cloro y azufre en la estabilidad mecánica y dimensional de morteros de cemento Pórtland substituido con desecho geotérmico”, Tesis de Maestría, Cinvestav-Mexico.

Escalante, J. I., Gomez, L. Y., Johal, K. K., Mendoza, G., Mancha, H., Mendez, J.; Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions, Cement and Concrete Research 31 (10), 1403-1409. DOI: https://doi.org/10.1016/S0008-8846(01)00587-7

Gesoglu, M., Guneyisi, E., Özbay, E. (2009), “Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume”, Construction and Building Materials, 23, p. 1847. DOI: https://doi.org/10.1016/j.conbuildmat.2008.09.015

Global Cement Information System (http:www.global-cement.dk) Global Cement Report: http://www.cemnet.com/members/companies/Global-Cement-Report

Gómez-Zamorano, L. Y. (2004), “Geothermal waste as a replacement material of Portland cement pastes”, Tesis de Doctorado. Cinvestav-Mexico.

Gómez-Zamorano, L. Y., Escalante-García, J. I., Mendoza-Suárez, G. (2004), “Geothermal Waste: An Alternative Replacement Material Of Portland Cement”, Journal of Materials Science 39, p. 4021-4025. DOI: https://doi.org/10.1023/B:JMSC.0000031486.70227.dc

Gómez-Zamorano, L. Y., Escalante-García, J. I. (2009), “Hidratacion y microestructura de cemento Portland sustituido parcialmente con silice ultrafina”, Materiales de construcción 59, p.5. DOI: https://doi.org/10.3989/mc.2009.46108

Gutteridge, W. A., Dalziel, J. A. (1990), “The effect of a secondary component on the hydration of Portland cement, Part II: Fine hydraulic binders”; Cement and Concrete Research, 20, p. 853. IMCYC: http://www.imcyc.com/cyt/junio04/siglo.htm DOI: https://doi.org/10.1016/0008-8846(90)90046-Z

Íñiguez-Sánchez, C. A. (2008) “Análisis de la solución de los poros en pastas de Cemento Pórtland Ordinario parcialmente reemplazado con desecho geotérmico”. Tesis de Maestría. UANL-Mexico.

Kuzel, H. J. (1996), Initial hydration reactions and mechanism of delay ettingite formation in Portland cements. Cement and Concrete Composites 18, pp. 195-203. DOI: https://doi.org/10.1016/0958-9465(96)00016-9

Mehta, P. K. (1983),”Pozzolanic and Cementitious By-Products as mineral admixture for concrete – A crystal Review.” Fly Ash, Silica Fume, Slag and Other Mineral by-products in concrete. ACI SP, pp. 1-46.

Mehta, P. K. (1989), “Pozzolanic and Cementitious By-Products in concrete – Another look.” Fly Ash, Silica Fume, Slag and Natural pozzolanic in concrete pp.114 (1) 1-43.

Patente (1990): “Process for Using sludge from geothermal brine to make concrete and concrete composition”, Número de patente: 4900360, Inventores: Olin D. Whitescarver, Indian Wells; Jonathan T. Kwan, Santa Maria; M. Kenneth Chan, Los Angeles; Daniel P. Hoyer, Palm Desert, California, E. U.

Snelson, D. G., Wild, S., O’Farrel, M. (2008), “Heat of hydration of Portland CementMetakaolin-Fly ash (PC-MK-PFA) blends”, Cement and Concrete Research, 38, p. 832. DOI: https://doi.org/10.1016/j.cemconres.2008.01.004

Talero, R., Rahhal, V. (2009), “Calorimetric comparison of Portland cements containing silica fume and metakaolin”; Journal of Thermal Analysis and Calorimetry, 96, p. 383. DOI: https://doi.org/10.1007/s10973-008-9096-x

Taylor, H. W. F., Mohan, K. (1985), “Analytical study of pure and extended Portland cement pastes: II fly ash and slag-cement pastes”, Journal of the American Ceramic Society, 68, p. 685. DOI: https://doi.org/10.1111/j.1151-2916.1985.tb10125.x

Thomas, M. D. A., Shehata, M. H, Shashiprakash, S. G., Hopkins, D. S, Cali K. (1999), “Use of ternary cementitious systems containing silica fume and fly ash concrete”, Cement and concrete research 29, p. 1207. DOI: https://doi.org/10.1016/S0008-8846(99)00096-4

Verbeck, G. J., Helmuth, R. H. (1968), “Structures and Physical Properties Of Cement Paste”, Proceedings of the 5th Intnl. Symposium on the Chemistry of Cement”, Tokyo, pp. 1-32.

Yogendran, V., Langan, B. W., Ward, M. A. (1991), Hydration of cement and silica fume paste, Cement and Concrete Research 21, pp.691-708. DOI: https://doi.org/10.1016/0008-8846(91)90164-D

Published
2015-01-30
How to Cite
Gómez-Zamorano, L. Y., Iñiguez-Sánchez, C. A., & Lothenbach, B. (2015). Microstructure and mechanical properties of composite cements: reactivity of pozzolanic and hydraulic cementitious materials. Revista ALCONPAT, 5(1), 18- 30. https://doi.org/10.21041/ra.v5i1.74
Section
Basic Research