Low environmental impact hybrid cements: reducing clinker content
Abstract
The environmental problems posed by portland cement manufacture have prompted the scientific committee to seek more eco-efficient binders with the same technological features as OPC; hybrid cements are among such alternative materials. Hybrid alkaline cements are multi-component systems containing a high mineral addition (fly ash (FA), metakaolin (MK), blast furnace slag (BFS)) content, low proportions (<30 %) of portland clinker and moderately alkaline activators. The substantially lower amount of clinker needed to manufacture these binders than ordinary portland cement is both economically and ecologically beneficial. The present study explored strength development and the reaction products generated by several hybrid cements, consisting of a number of industrial by-products and very low portland clinker contents.Downloads
References
Andersen, M. D., Jakobsen, H. J., Skibsted, J. (2003), Incorporation of aluminum in the calcium silicate hydrate (C-S-H) of hydrated Portland cements: a high-field 27Al and 29Si MAS NMR study. Inorganic Chemistry Vol. 42 pp. 2280-2287. Arbi, K., Palomo, A.,
Fernández-Jimenez, A. (2013), Alkali-activated blends of calcium aluminate cement and slag/diatomite, Ceramic International Vol. 39 pp. 9237-9245
Duxon, P, Fernández-Jiménez, A, Provis, J. L, Lukey, G. C, Palomo, A., Van Deventer, J. S. J. (2007), Geopolymer technology: The current state of the art. Journal of Materials Science Vol. 42, pp 2917-2933
Cong, X., Kirkpartrick, R. J. (1996), 29Si NMR study of the structure of calcium silicate hydrate, Advance in Cement Based Materials Vol. 3 pp. 144-156
Engelhardt, G., Michel, D. (1987), High resolution solid state RMN of silicates and zeolites, Ed. Wiley and Sons, New Delhi, India
Fernández-Jiménez, A., Puertas, F., Sanz, J., Sobrados, I. (2003), Structure of calcium silicate hydrated formed in alkali-activated slag pastes. Influence of the type of alkaline-activator, Journal of the American Ceramic Society Vol. 86, pp 1389-1394.
Fernández-Jiménez, A., Palomo, A., Sobrados, I., Sanz, J. (2006), The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, Vol. 91, pp. 111-119.
Fernández-Jiménez, A., Zibouche, F., Boudissa, N., GarcÃa-Lodeiro, I., Abadlia, M. T., Palomo, A. (2013), Metakaolin-Slag-Clinker Blends.†The role of Na+ or K+ as Alkaline activators of theses ternary blends, Journal of the American Ceramic Society Vol.96 pp.1991-1998.
GarcÃa-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D. E. (2010a), Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium. Cement and Concrete Research Vol. 40, pp 27-32.
Garcia-Lodeiro, I., Fernández-Jiménez, A., Macphee, D. E., Palomo, A. (2010b), Effects of calcium addition on N-A-S-H cementitious gels. Journal of the American Ceramic Society, Vol. 93 pp. 1934-1940
Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., Macphee, D. E. (2011), Compatibility studies between N-A-S-H and C-A-S-H Gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O, Cement and Concrete Research Vol. 41 pp. 923-931
Garcia-Lodeiro, I., Fernández-Jiménez, A., Palomo, A. (2013a), Variation in hybrid cements over time. Alkaline activation of fly ash–portland cement blends, Cement and Concrete Research Vol. 52 pp.112-122
Garcia-Lodeiro, I., Fernández-Jiménez, A., Palomo, A. (2013b), Hydration kinetics in hybrid binders: Early reaction stages. Cement and Concrete Composites Vol. 39 pp. 82-92
Gartner E. (2004), Industrially interesting approaches to “low-CO2†cements, Cement and Concrete Research Vol. 34 pp. 1489–1498.
Li, G., LeBescop, P., Moranville, M. (1996), The U phase formation in cement based systems containing high amounts of Na2SO4, Cement and Concrete Research Vol.26 pp. 23-33
Lea, F. M. (1974), The chemistry of cement and concrete. 3rd edn. Edward Arnold. Glasgow, UK.
Palomo, A., Grutzeck, M. W., Blanco, M. T. (1999), Alkali-activated fly ashes. A cement for the future, Cement and Concrete Research Vol. 29 pp. 1323-1329.
Palomo, A., Alonso, S., Fernández-Jiménez, A., Sobrados, I., Sanz J. (2004), Alkali activated of fly ashes. A NMR study of the reaction products, Journal of the American Ceramic Society Vol. 87 pp. 1141-1145.
Palomo, A., Fernández-Jiménez, A., Kovalchuk, G., Ordoñez, L. M., Naranjo, M. C. (2007), OPC-fly ash cementitious systems: study of gel binders produced during alkaline hydration. Journal of Materials Science Vol. 42 pp. 2958–2966.
Provis, J. L., And Deventer, J. S. J. (2009), Geopolymers, structure, processing, properties and industrial applications, Woodhead Publishing Limited, ISBN 978-1-84569-449-4.
Richardson, I. G., Groves, G. W. (1997), The structure of calcium silicate hydrate phases present in hardened pastes of white Portland cement/blast furnace slag blends. Journal of Materials Science Vol. 32 pp. 4793-4802
Shi, C., Day, R. L. (2000), Pozzolanic reaction in the presence of chemical activators. Part II. Reaction products and mechanism. Cement and Concrete Research Vol. 30 pp 607-613.
Shi, C., Roy, D. M., Krivenko, P. V. (2006), Alkali-activated Cements and Concretes, Ed. Taylor & Francis, London, U.K.
Taylor, H. F. W. (1997), Cement Chemistry (2nd Ed.), Thomas Telford, London, Yip, C. K., Lukey, G. C., Van Deventer, J. S. J. (2005), The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research Vol. 35 pp. 1683-1697.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.