Shear behavior of autoclaved aerated concrete confined masonry walls with different scales

  • Jorge Varela-Rivera Universidad Autónoma de Yucatán
  • Juan Cancep-Rodriguez Universidad Autónoma de Yucatán
  • Luis Fernandez-Baqueiro Universidad Autónoma de Yucatán
  • Joel Alberto Moreno Herrera Universidad Autónoma de Yucatán
Keywords: confined walls, autoclaved aerated concrete, scaling, shear behavior, in-plane reverse cyclic loads


An experimental study on the shear behavior of autoclaved aerated concrete (AAC) confined masonry walls is presented.  A total of five reduced-scale walls were tested in the laboratory under reverse lateral loads.  Variables studied were the geometric scaling factor and the aspect ratio of walls.  Scales considered were 1:2 and 1:3. Based on the behavior of the reduced- and corresponding full-scale walls experimental scaling factors were determined.  Existing geometric scaling factors were compared with corresponding experimental scaling factors.  It was concluded that geometric scaling factors can be used to predict the shear strength and maximum shear strength of walls with scales of 1:2 and 1:3. Geometric scaling factors can only be used to predict stiffness and drift ratios associated with the maximum shear strength of walls.


Download data is not yet available.


Abrams, D., Paulson T. J. (1991), Modeling Earthquake Response of Concrete Masonry Building Structures. ACI Struct. J. 88(4):475-485. DOI:

Alcocer, S. M., Murià-Vila, D., Peña-Pedroza, J. I. (1999). “Comportamiento dinámico de muros de mampostería confinada” in: Series del Institutito de Ingeniería, 616, UNAM: Mexico City, Mexico. (in Spanish).

Aldemir, A., Binici, B., Canbay, E., Yakut, A. (2017), Lateral load testing of an existing two-story masonry building up to near collapse. B. Earthq. Eng. 15(8):3365-3383. DOI:

Aroni, S., de Groot, G. J., Robinson, M. J., Svanholm, G., Wittman, F. H. (1993), “Autoclaved Aerated Concrete: Properties, Testing, and Design: RILEM Recommended Practice”. 1st. ed., E & FN Spon: London, UK.

ASTM International. (2017). ASTM C1693/C1693-11: Standard Specification for Autoclaved Aerated Concrete (AAC). West Conshohocken, PA, USA. DOI:

ASTM International. (2021). ASTM C109/C109M-21: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2 - in. or [50 - mm] Cube Specimens). West Conshohocken, PA, USA. DOI:

ASTM International. (2023). ASTM C39/C39M-23: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA, USA. DOI:

Benedetti, D., Carydis, P., Pezzoli, P. (1998), Shaking table tests on 24 simple masonry buildings. Earthq. Eng. Struct. D. 27(1):67-90.<67::AID-EQE719>3.0.CO;2-K DOI:<67::AID-EQE719>3.0.CO;2-K

Bose, S., Rai, D. C. (2014). “Behavior of AAC Infilled RC Frame Under Lateral Loading” in: Proceedings of the 10th National Conference in Earthquake Engineering, Anchorage, Alaska.

Chourasia, A., Bhattacharyya, S. K., Bhandari, N. M., Bhargava, P. (2016), Seismic Performance of Different Masonry Buildings: Full-Scale Experimental Study. J. Perform. Constr. Fac. 30(5):1 12. DOI:

Edison Hydraulic Load Maintainers (1994), “Operation and Maintenance Manual”. Edison Hydraulic Load Maintainers, Paradise, CA, USA.

Gokmen, F., Binici, B., Aldemir, A., Taghipour, A., Canbay, E. (2019), Seismic behavior of autoclaved aerated concrete low-rise buildings with reinforced wall panels. B. Earthq. Eng. 17(7):3933-3957. DOI:

Henderson, R. C., Fricke, K. E., Jones, W. D., Beavers, J. E., Bennett, R. M. (2003), Summary of a Large- and Small-Scale Unreinforced Masonry Infill Test Program. J. Struct. Eng., 129(12):1667-1675. DOI:

Lourenço, P. B., Avila, L., Vasconcelos, G., Alves, J. P., Mendes, N., Costa, A. C. (2013), Experimental investigation on the seismic performance of masonry buildings using shaking table testing. B. Earthq. Eng. 11:1157-1190. DOI:

Normas Tecnicas Complementarias. (2020). NTCM: Normas Tecnicas Complementarias para el Diseño y Construccion de Estructuras de Mamposteria (Technical Norms for the Construction and Design of Masonry Structures) (in spanish). Mexico City, Mexico.

Penna, A., Magenes, G., Calvi, G. M., Costa, A. A. (2008). “Seismic Performance of AAC Infill and Bearing Walls with Different Reinforcement Solutions” in: Proceedings of the 14th International Brick and Block Masonry Conference, Sydney, Australia.

Perez-Gavilan, J. J., Flores, L. E., Alcocer, S. M. (2015), An Experimental Study of Confined Masonry Walls with Varying Aspect Ratios. Earthq. Spectra. 31(2):945-968. DOI:

Ravichandran, S. S., Klingner, R. E. (2012), Behavior of Steel Moment Frames with Autoclaved Aerated Concrete Infills. ACI Struct. J. 109(1):83-90. DOI:

Rosado-Gruintal, A. I. (2014). Desempeño elástico y plástico del concreto fabricado con agregados reciclados de origen calizo de residuos de demolición. Masters Thesis, Universidad Autónoma de Yucatán. (in Spanish).

San Bartolomé, A., Delgado, E., Quiun, D. (2009). “Seismic behavior of a two-story model of confined adobe masonry” in: Proceedings of the 11th Canadian Symposium, Toronto, Ontario, Canada.

Shahzada, K., Khan, A. N., Elnashai, A. S., Ashraf, M., Javed, M., Naseer, A., Alam, B. (2012), Experimental Seismic Performance Evaluation of Unreinforced Brick Masonry Buildings. Earthq. Spectra. 28(3):1269-1290. DOI:

How to Cite
Varela-Rivera, J., Cancep-Rodriguez, J., Fernandez-Baqueiro, L., & Moreno Herrera, J. A. (2024). Shear behavior of autoclaved aerated concrete confined masonry walls with different scales. Revista ALCONPAT, 14(2), 157 - 173.