Supervised classification of pathologies in asphalt pavements surface from a Remote Piloted Aircraft

  • Gabriela Legramanti Universidade Tecnológica Federal do Paraná, Pato Branco
  • Renato Damião Duarte Universidade Tecnológica Federal do Paraná, Pato Branco
  • Ernesto Valdecir Gomes Junior Universidade Tecnológica Federal do Paraná, Pato Branco
  • Sérgio Luiz Dallagnol Universidade Tecnológica Federal do Paraná, Pato Branco
  • Danilo Rinaldi Bisconsini Universidade Tecnológica Federal do Paraná, Pato Branco
  • Henrique Dos Santos Felipetto Universidade Tecnológica Federal do Paraná, Pato Branco
  • Liza De Moraes Universidade Tecnológica Federal do Paraná, Pato Branco
Keywords: pavement, pavement management, pathologies, Remotely Piloted Aircraft, RPA

Abstract

Defect identification is a routine activity in Pavement Management Systems (SGP) for decision-making about Maintenance and Rehabilitation (M&R) services. Traditional methods can be time consuming, disrupt traffic and cause accidents. In this study, pathologies on asphalt pavements were evaluated using three methods: by walking, manual classification of images from a Remotely Piloted Aircraft (RPA) and supervised classification. Manual classification resulted in 93.1% accuracy, against 32.7% in supervised classification. It is concluded that the RPA is adequate to evaluate pathologies in asphalt pavements, providing time savings and safety.

Downloads

Download data is not yet available.

Author Biographies

Gabriela Legramanti, Universidade Tecnológica Federal do Paraná, Pato Branco

Graduada e mestre em engenharia civil, com pesquisas na áres de transportes, acidentes de trânsito e sistema de informações geográficas. Foi docente de graduação na área de rodovias, pavimentação e transportes. Hoje atua junto da Agência Nacional de Transportes Terrestres, em Brasília, Brasil.

Renato Damião Duarte, Universidade Tecnológica Federal do Paraná, Pato Branco

Engenheiro Civil pela Universidade Tecnológica Federal do Paraná (UTFPR) campus Pato Branco, pós graduado em Estruturas de Concreto Armado pela IPOG. Atua na Supermix Concretos.

Ernesto Valdecir Gomes Junior, Universidade Tecnológica Federal do Paraná, Pato Branco

Graduado em Engenharia Civil pela Universidade Tecnológica Federal do Paraná (UTFPR) campus Pato Branco.

Sérgio Luiz Dallagnol, Universidade Tecnológica Federal do Paraná, Pato Branco

Engenheiro Civil pela Universidade Tecnológica Federal do Paraná (UTFPR) campus Pato Branco, com mobilidade estudantil internacional em Engenharia Civil na Universidade de Santiago de Compostela (USC) campus Lugo, Espanha.

Danilo Rinaldi Bisconsini, Universidade Tecnológica Federal do Paraná, Pato Branco

Engenheiro Civil pela Universidade Estadual de Maringá (UEM), Mestre e Doutor em Infraestrutura de Transportes pela Escola de Engenharia de São Carlos da Universidade de São Paulo (EESC-USP). Professor no Departamento de Construção Civil da Universidade Tecnológica Federal do Paraná - Campus Pato Branco (UTFPR-PB) e do Programa de Pós-Graduação em Engenharia Civil (PPGEC) da UTFPR-PB. Desenvolve projetos na área de Transportes, principalmente nas áreas de Gerência de Pavimentos e Mobilidade Urbana.

Henrique Dos Santos Felipetto, Universidade Tecnológica Federal do Paraná, Pato Branco

Professor na Universidade Tecnológica Federal do Paraná - UTFPR, Campus Pato Branco - Departamento de Agrimensura, Doutorando em Eng. Agrícola na UNIOESTE (Linha de pequisa: Geoprocessamento, Estatística Espacial e Agricultura de Precisão), Mestre em Engenharia Agrícola pela Universidade Estadual do Oeste do Paraná - UNIOESTE, Ganhador do XXVI Prêmio Jovem Cientista 2012 do CNPq 2º Lugar Categoria Estudante de Graduação, Tecnólogo em Geoprocessamento pela Universidade Federal de Santa Maria - UFSM, Técnico em Geoprocessamento pela mesma instituição.

Liza De Moraes, Universidade Tecnológica Federal do Paraná, Pato Branco

Graduanda em Engenharia Civil pela Universidade Tecnológica Federal do Paraná (UTFPR) campus Pato Branco.

References

Astor, Y., Nabesima, Y., Utami, R., Sihombing, A. V. R., Adli M. and Firdaus M. R. (2023), Unmanned aerial vehicle implementation for pavement condition survey. Transportation Engineering. 12(2023):100168. https://doi.org/10.1016/j.treng.2023.100168 DOI: https://doi.org/10.1016/j.treng.2023.100168

Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., Nielsen, H. (2000), Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics, 16(5), 412–424. https://doi.org/10.1093/bioinformatics/16.5.412 DOI: https://doi.org/10.1093/bioinformatics/16.5.412

Branco, L. H. C., Segantine, P. C. L. (2015), “MaNIAC-UAV - A methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehiclesâ€. Journal of Physics: Conference Series, 633(1). https://doi.org/10.1088/1742-6596/633/1/012122 DOI: https://doi.org/10.1088/1742-6596/633/1/012122

Campbell, J. B., Hall-Beyer, M. (1997), “Introduction to remote sensingâ€. Cartographica, Toronto, Canadá, p. 70.

Cohen, J. (1960), A coefficient of agreement for nominal scales. Educational And Psychological Measurement, 10(1):37–46. https://doi.org/10.1177/001316446002000104 DOI: https://doi.org/10.1177/001316446002000104

Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., Goetz, A. F. H. (1993). “The spectral image processing system (SIPS)- interactive visualization and analysis of imaging spectrometer data†in: AIP Conference Proceedings 283, Pasadena: California (USA), pp. 145–163. https://doi.org/10.1063/1.44433 DOI: https://doi.org/10.1016/0034-4257(93)90013-N

Hassan, S.-A., Rahim, T., Shin, S.-Y. (2021), An improved deep convolutional neural network-based autonomous road inspection scheme using unmanned aerial vehicles. Electronics. 10(22):2764. https://doi.org/10.3390/electronics10222764 DOI: https://doi.org/10.3390/electronics10222764

INPE. Manual de Geoprocessamento. Disponível em: <http://www.dpi.inpe.br/spring/portugues/tutorial/introducao_geo.html>. Acesso: 8 out. 2021.

Landis, J. R., Koch, G. G. (1977), The Measurement of observer agreement for categorical data. Biometrics, 33(1):159–174. https://doi.org/10.2307/2529310 DOI: https://doi.org/10.2307/2529310

Matthews, B. W. (1975), Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta, 405(2):442–451. https://doi.org/10.1016/0005-2795(75)90109-9 DOI: https://doi.org/10.1016/0005-2795(75)90109-9

McGwire, K. C., Fisher, P. (2001), Spatially Variable Thematic Accuracy: Beyond the Confusion Matrix. Spatial Uncertainty in Ecology, 308–329. https://doi.org/10.1007/978-1-4613-0209-4_14 DOI: https://doi.org/10.1007/978-1-4613-0209-4_14

Oliveira, F. H. L. de, Arantes, A. E., Lima Neto, P. D. S. (2020), Estudo de método para identificação de panelas e remendos em pavimentos urbanos com a utilização de UAS quadrirrotor. Revista Tecnologia, 41(2):1-14. https://doi.org/10.5020/23180730.2020.10838 DOI: https://doi.org/10.5020/23180730.2020.10838

Pan, Y., Zhang, X., Cervone, G., Yang, L. (2018), Detection of Asphalt Pavement Potholes and Cracks Based on the Unmanned Aerial Vehicle Multispectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10):3701–3712. https://doi.org/10.1109/JSTARS.2018.2865528 DOI: https://doi.org/10.1109/JSTARS.2018.2865528

Parente, D. C., Felix, N. C., Picanço, A. P. (2017), Utilização de veículo aéreo não tripulado (VANT) na identificação de patologia superficial em pavimento asfáltico. Revista ALCONPAT. 7(2):160–171. https://doi.org/10.21041/ra.v7i2.161 DOI: https://doi.org/10.21041/ra.v7i2.161

Pinto, L., Bianchini, F., Nova, V., Passoni, D. (2020), Low-Cost UAS Photogrammetry for Road Infrastructure's Inspection. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B2):1145–1150. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1145-2020 DOI: https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1145-2020

Ragnoli, A., De Blasiis, M. R., Di Benedetto, A. (2018), Pavement distress detection methods: A review. Infrastructures, 3(4):1–19. https://doi.org/10.3390/infrastructures3040058 DOI: https://doi.org/10.3390/infrastructures3040058

Ranjbar H., Forsythe, P., Fini, A. A. F. and Maghrebi M. (2023), Addressing practical challenge of using autopilot drone for asphalt surface monitoring: road detection, segmentation, and following. Results in Engineering. 18(2023):101130. https://doi.org/10.1016/j.rineng.2023.101130 DOI: https://doi.org/10.1016/j.rineng.2023.101130

Ranyal, E., Sadhu A., Jain K. (2022), Road condition monitoring using smart sensing and artificial intelligence: a review. Sensors. 22(8):3044. https://doi.org/10.3390/s22083044 DOI: https://doi.org/10.3390/s22083044

Richards, J. A. (2013), “Remote Sensing Digital Image Analysisâ€. Springer-Verlag Berlin Heidelberg, 5ed., Heidelberg, Alemanha, p. 340. https://doi.org/10.1007/978-3-642-88087-2 DOI: https://doi.org/10.1007/978-3-642-88087-2

Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., Mononen, J. (2018), Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural Processes, 148:56–62. https://doi.org/10.1016/j.beproc.2018.01.004 DOI: https://doi.org/10.1016/j.beproc.2018.01.004

Schnebele, E., Tanyu, B. F., Cervone, G., Waters, N. (2015), Review of remote sensing methodologies for pavement management and assessment. European Transport Research Review, 7(2):1–19. https://doi.org/10.1007/s12544-015-0156-6 DOI: https://doi.org/10.1007/s12544-015-0156-6

Shaghlil, N., Khalafallah, A. (2018), “Automating Highway Infrastructure Maintenance Using Unmanned Aerial Vehicles†in: Construction Research Congress 2018, New Orleans: Louisiana (USA), pp. 486-495. https://doi.org/10.1061/9780784481295.049 DOI: https://doi.org/10.1061/9780784481295.049

Story, M., Congalton, R. G. (1986), Remote Sensing Brief - Accuracy Assessment: A User’s Perspective. Photogrammetric Engineering and Remote Sensing, 52(3):397–399. doi: 0099-1112/86/5203-397$02.25/0

Tan, Y., Li, Y. (2019), UAV photogrammetry-based 3D road distress detection. ISPRS International Journal of Geo-Information, 8(9):409. https://doi.org/10.3390/ijgi8090409 DOI: https://doi.org/10.3390/ijgi8090409

Witten, I. H., Frank, E., Hall, M. A. (2016), “Data Mining - Practical Machine Learning Tools and Techniquesâ€. Morgan Kaufmann Elsevier, Burlington, pp. 654.

Zhu, Q., Dinh, T. H., Phung, M. D., Ha, Q. P. (2021), Hierarchical Convolutional Neural Network with Feature Preservation and Autotuned Thresholding for Crack Detection. IEEE Access, 9:60201–60214. https://doi.org/10.1109/ACCESS.2021.3073921 DOI: https://doi.org/10.1109/ACCESS.2021.3073921

Published
2023-09-01
How to Cite
Legramanti, G., Duarte, R. D., Gomes Junior, E. V., Dallagnol, S. L., Rinaldi Bisconsini, D., Dos Santos Felipetto, H., & De Moraes, L. (2023). Supervised classification of pathologies in asphalt pavements surface from a Remote Piloted Aircraft. Revista ALCONPAT, 13(3), 271 - 285. https://doi.org/10.21041/ra.v13i3.685