Performance of the addition of cane bagasse ash as a filler to produce self-compacting concrete
Abstract
The performance of the influence of cane bagasse ash (CBC) as filler in self-compacting concrete mixtures (CAC), added in a 0%, 5%, 10%, 15%, 20% and 25% with respect to weight of cement was evaluated. Ash characterization was performed by FTIR, FRX and XRD. The workability properties of CAC were determined by slump flow, J-ring, L-box, V-funnel, Visual Stability Index, and compressive strength tests. According to the results, the percentages of 10 to 20% in the CAC mixtures obtained a satisfactory performance, evidencing outstanding workability and compressive strength parameters compared to works similar to those published in the literature.
Downloads
References
ACI-211.4R. (2008). American Concrete Institute. Guide for Selecting Proportions for High-Strength Concrete with Portland Cement and Fly Ash. Michigan, United States of America.
ACI-211.1. (2002). American Concrete Institute. Standard Practice for Selecting Proportions for Normal Heavyweight, and Mass Concrete. Michigan, United States of America.
Ãguila, I., & Sosa, M. (2008). Evaluación fÃsico quÃmico de cenizas de cascarilla de arroz, bagazo de caña y hoja de maÃz y su influencia en mezclas de mortero, como materiales puzolánicos. Revista de la Facultad de IngenierÃa Universidad Central de Venezuela, 23(4), 55-66. Recuperado en 05 de junio de 2021, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-40652008000400006&lng=es&tlng=es.
Amjad, U., Ali, S., & Ahad, Z. (January de 2015). Bagasse ash utilization as viscosity modifying agent to produce an economical self compacting concrete. International Journal of Advanced Structures and Geotechnical Engineering, 04(01).
ASTM-C33/C33M-18. (2018). American Society for Testing and Materials. Standard Specification for Chemical Admixtures for Concrete. West Conshohocken, PA, United States of America: ASTM International.
ASTM-C494/C494M-17. (2017). American Society for Testing and Materials. Standard Specification for Concrete Aggregates. West Conshohocken, PA, United States of America: ASTM International.
ASTM-C31/C31M-08a. (2008). American Society for Testing and Materials. Standard Practice for Making and Curing Concrete Test Specimens in the Field. West Conshohocken, PA, United States of America: ASTM International.
ASTM-C1611/C1611M-18. (2018). American Society for Testing and Materials. Standard Test Method for Slump Flow of Self-Consolidating Concrete. West Conshohocken, PA, United States of America: ASTM International.
ASTM-C39/C39M-04a. (2004). American Society for Testing and Materials. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA, United States of America: ASTM International.
ASTM-C618-19. (2019). American Society for Testing and Materials. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. West Conshohocken, PA, United States of America: ASTM International.
Cachán A., C. (2001). Encuentro Medioambiental Almeriense: En busca de soluciones. (pág. 29). AndalucÃa.
Camargo, M., Pereira, A., Akasaki, J., Fioriti, C., Payá, J., & Pinheiro, J. (2014). Rendimiento de morteros producidos con la incorporación de ceniza de bagazo de caña de azúcar. Revista IngenierÃa de Construcción, 29(2), 187-199. http://dx.doi.org/10.4067/S0718-50732014000200005 DOI: https://doi.org/10.4067/S0718-50732014000200005
Castaldelli, V., Moraes, J., Akasaki, J., Melges, J., Monzó, J., Borrachero, M., . . . Tashima, M. (15 de June de 2016). Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel, 174, 307-316. https://doi.org/10.1016/j.fuel.2016.02.020 DOI: https://doi.org/10.1016/j.fuel.2016.02.020
Dharanidharan, S., Rajkumar, L., & Karthick, B. (March de 2015). An experimental study on mechanical properties of concrete by using sugarcane bagasse ash. International Journal of Engineering Sciences & Research Technology, 401-405.
Efnarc, S. (2002). European Federation of National Associations Representing for Concrete. Especificaciones y directrices para el Hormigón autocompactable - HAC.
Hien Le, D., Nain Sheen, Y., & Tra Lam, M. N. (2018). Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash–slag blended cement. Construction and Building Materials (185), 138-147. https://doi.org/10.1016/j.conbuildmat.2018.07.029 DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.029
Industria cementera en México: Sin señales de recuperación a pesar de tocar fondo el año pasado. (2020, 22 enero). S&P Global Ratings. Recuperado 13 de diciembre de 2022, de https://www.spglobal.com/_assets/documents/ratings/es/2020-01-22-industria-cementera-mexico.pdf
Jiménez, V. (Abril de 2013). Tesis de Doctorado. Efecto de la ceniza de bagazo de caña y ceniza volante en la trabajabilidad, propiedades mecánicas y durabilidad de concretos ternarios, 172. (S. Centro de Investigación en Materiales Avanzados, Ed.) Chihuahua, Chihuahua, México. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/74
León-Velez, A., & Guillén-Mena, V. (2020). EnergÃa contenida y emisiones de CO2 en el proceso de fabricación del cemento en Ecuador. Ambiente ConstruÃdo, 20, 611-625. https://doi.org/10.1590/s1678-86212020000300448 DOI: https://doi.org/10.1590/s1678-86212020000300448
López, Mauricio, & Castro, José Tomás. (2010). Efecto de las puzolanas naturales en la porosidad y conectividad de poros del hormigón con el tiempo. Revista ingenierÃa de construcción, 25(3), 419-431. https://dx.doi.org/10.4067/S0718-50732010000300006 DOI: https://doi.org/10.4067/S0718-50732010000300006
Martirena, J., Middendorf, B., Gehrke, M., & Budelmann, H. (1998). Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cement and Concrete Research, 11(28), 1525-1536. https://doi.org/10.1016/S0008-8846(98)00130-6 DOI: https://doi.org/10.1016/S0008-8846(98)00130-6
Martirena, J. F., Middendhort, B., & Budelmann, H. y. (1997). Estudio de la reacción de hidratación de aglomerantes de cal puzolana fabricados en base a desechos de la industria azucarera. Santa Clara, Cuba: Universidad Central de las Villas-UCLV.
Mehta, P. K. (2000, octubre). Avances en la tecnologÃa del concreto. Revista Construcción y TecnologÃa - IMCYC. Recuperado 10 de mayo de 2020, de http://www.imcyc.com/revista/2000/octubre2000/concreto.htm#:~:text=Entre%20los%20avances%20recientes%2C%20el,alta%20resistencia%20y%20gran%20durabilidad.
Memon, S., & Obaid, H. (2009). Production of low cost self compacting concrete using bagasse ash. Construction and Building Materials (23), 703-712. https://doi.org/10.1016/j.conbuildmat.2008.02.012 DOI: https://doi.org/10.1016/j.conbuildmat.2008.02.012
Méndez, M. (2008). Tesis de MaestrÃa. Determinación de la reactividad puzolánica de adiciones minerales de origen natural con el cemento Portland, 93. Santa Cruz Xoxocotlán, Oaxaca, México: Instituto Politécnico Nacional.
Nasvik, J. (2006, marzo). El ABC del concreto autocompactable. Revista Construcción y TecnologÃa - IMCYC. Recuperado 10 de mayo de 2020, de http://www.imcyc.com/ct2006/marzo06/TECNOLOGIA.pdf
Neville, A., & Brooks, J. (1998). TecnologÃa del concreto. Reimpresión 2010, México: Trillas.
Okamura, H., & Ouchi, M. (2003). Self-compacting concrete. Journal of advanced concrete technology, 1(1), 5-15. https://doi.org/10.3151/jact.1.5 DOI: https://doi.org/10.3151/jact.1.5
Petermann, J., Nunes, S., & Sales, A. (2018). Self-compacting concrete incorporating sugarcane bagasse ash. Construction and Buildng Materials (172), 635-649. https://doi.org/10.1016/j.conbuildmat.2018.03.277 DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.277
Teixeira, S. R., Romero, M. & Rincón, J. M. (2010). Crystallization of SiO2-CaO-Na2O Glass Using Sugarcane Bagasse Ash as Silica Source. Journal of the American Ceramic Society, 93(2), 450-455. https://doi.org/10.1111/j.1551-2916.2009.03431.x DOI: https://doi.org/10.1111/j.1551-2916.2009.03431.x
Robayo, R., Mattey, P., & Delvasto, S. (2015). Obtención de concretos autocompactantes empleando residuos de demolición. (U. S. Bolivar, Ed.) Revista Latinoamericana de Metalurgia y Materiales, 35(1) 86-94. Recuperado en 12 de agosto de 2022, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522015000100012&lng=es&tlng=es.
SIAP. (11 de Diciembre de 2018). Servicio de Información Agroalimentaria y Pesquera. Recuperado el Enero de 2019, de Servicio de Información Agroalimentaria y Pesquera: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalSinPrograma.do
Sinde, K., & Angalekar, S. (2016). To study the hardened properties of SCC by effectiveness range of SCBA of different regions. International Research Journal of Engineering and Technology (IRJET), 03(08).
Socrates, G. (2004). Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Third Edition ed.). West Sussex, England: John Wiley & Sons.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.