Electrochemical realkalinization applied to carbonated concrete samples under the criteria of three standards

  • Paat Estrella Paat Estrella Universidad Autonoma de Campeche https://orcid.org/0000-0002-4009-7770
  • Jose Alexandro Miam Cuevas Universidad Autonoma de Campeche
  • Erick Edgar Maldonado Bandala Universidad Veracruzana
  • Tezozomoc Perez Lopez Universidad Autonoma de Campeche
  • Demetrio Nieves Mendoza Universidad Veracruzana
Keywords: electrochemical realkalinization, pH, half-cell potential, current intensity

Abstract

The effect of electrochemical realkalinization was evaluated by applying the standards UNE-EN-1504, NACE-SP0107-2007 and NMX-C-553-ONNCCE-2018, on previously carbonated reinforced concrete samples. With the monitoring of the degree of realkalinization, through pH and half-cell potential measurements at 7, 14, 21 and 28 days, pH recovery is observed in all cases, obtaining characteristic half-cell potential values in each current application, which confirms the polarization of the steel modifying the thermodynamic condition of the concrete-steel interface and causing chemical changes in the concrete paste. With the NMX-C-553-ONNCCE-2018 standard the steel was polarized without reaching the overprotection region, avoiding the risk of producing hydrogen and brittleness in the steel.

Downloads

Download data is not yet available.

References

Aguirre-Guerrero, A. M., & de Gutiérrez, R. M. (2018), Efficiency of electrochemical realkalisation treatment on reinforced blended concrete using FTIR and TGA. Construction and Building Materials, 193, 518-528. DOI: 10.1016/j.conbuildmat.2018.10.195 DOI: https://doi.org/10.1016/j.conbuildmat.2018.10.195

Aguirre-Guerrero, A. M., Mejía-de-Gutiérrez, R., Montês-Correia, M. J. R. (2016), Corrosion performance of blended concretes exposed to different aggressive environments. Construction and Building Materials, 121, 704-716. DOI:10.1016/j.conbuildmat.2016.06.038 DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.038

Annual Book of ASTM Standards (2016), Construction. Chemical-resistant materials; vitrified clay, concrete, fiber-cement products; mortars; masonry. Section 4. Vol. 04.05.

Andrade, C., Alonso, C., Rodríguez, J. (1989), Remaining service life of corroding structures. IABSE Symposium on Durability, Lisbon, Sep., pp. 359-363.

ASTM C876-15. Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.

Bize, B. (2001), Béton armé corrode: Les traitement électrochimiques. In: CSTB Magazine, No. 136. juillet - aoùt 2001.

Castellote, M., Llorente, I., Andrade, C. (2003), Influence of the external solution in the electroosmotic flux induced by realkalisation. in: Mater. Construcc., vol. 53, no 271– 272. pp. 101–111. DOI: https://doi.org/10.3989/mc.2003.v53.i271-272.294 DOI: https://doi.org/10.3989/mc.2003.v53.i271-272.294

Castellote, M., Llorente, I., Andrade, C., Turrillas, X., Alonso, C., Campo, J. (2006), In-situ monitoring the realkalisation process by neutron diffraction: electro-osmotic flux and portlandite formation. Cem Concr Res. 36:791–800. https://doi.org/10.1016/j.cemconres.2005.11.014 DOI: https://doi.org/10.1016/j.cemconres.2005.11.014

Castellote M., Llorente, I., Andrade C., Turrillas, X, Alonso, C., Campo, J. (2006), Neutron diffraction as a tool to monitor the establishment of the electro-osmotic flux during realkalisation of carbonated concrete. Physica B. 385– 386:26–528. https://doi.org/10.1016/j.physb.2006.05.263 DOI: https://doi.org/10.1016/j.physb.2006.05.263

Chatterji, S. (1994), Simultaneous chloride removal and realcalisation of old concrete structures. Cement and Concrete Research 24. No. 6. pp. 1051 -1054. DOI:10.1016/0008-8846(94)90028-0 DOI: https://doi.org/10.1016/0008-8846(94)90028-0

CYTED – DURAR. Manual de InspeccioÌn, EvaluacioÌn y DiagnoÌstico de CorrosioÌn en Estructuras de HormigoÌn Armado. Reporte Final, Red Durar, CYTED, Maracaibo, (1997).

Fajardo, G., Escadeillas G., Arliguie, G. (2006), Electrochemical chloride extraction (ECE) from steel reinforced concrete specimens contaminated from artificial seawater. Corrosion Science 48, pp: 110-125. https://doi.org/10.1016/j.corsci.2004.11.015 DOI: https://doi.org/10.1016/j.corsci.2004.11.015

Del Valle Moreno, A., PeÌrez-LoÌpez T., MartiÌnez Madrid, M. (2001), El fenoÌmeno de la corrosioÌn en estructuras de concreto reforzado. PublicacioÌn TeÌcnica No. 182, SecretariÌa de Comunicaciones y Transportes, Instituto Mexicano del Transporte, Sanfandila, QuereÌtaro.

González Díaz, F. (2010), Realcalinización electroquímica del concreto reforzado carbonatado: una opción de prevención contra la corrosión. Doctorado thesis, Universidad Autónoma de Nuevo León.

González, F., Fajardo, G., Arliguie, G., Juárez, C. A., Escadeillas, G. (2011), Electrochemical Realkalisation of Carbonated Concrete: An Alternative Approach to Prevention of Reinforcing Steel Corrosion. International Journal of Electrochemical Science. 6. pp 6332 – 6349.

Helene, P., Monteiro, J. (1994), Can local repairs be durable solutions for steel corrosion in concrete structures. Annals of international Conference on Corrosion and Corrosion Protection of Steel in Concrete, Vol. 2.

Linares, D., Sánchez, M. (2003), Construction, operation and performance of a chamber for tests of accelerated carbonation. Rev. Tec Ing. Univ Zulia, 26, 34-44.

Mietz, J. (1995), Electrochemical realkalisation for rehabilitation of reinforced concrete structures. Materials and corrosion. 46(9), 527-533. https://doi.org/10.1002/maco.19950460904 DOI: https://doi.org/10.1002/maco.19950460904

Mietz, J. (1998), Electrochemical rehabilitation methods for reinforced concrete structures a state of the art report. EFC N°24, IOM Communications Ltd, London.

NACE (2007), SP0107-2007 Electrochemical Realkalization and Chloride Extraction for Reinforced Concrete

Normas mexicanas del ONNCCE (2018), NMX-C-111-ONNCCE-2018 Industria de la Construcción-Agregados para concreto hidráulico-Especificaciones y métodos de ensayo.

Normas mexicanas del ONNCCE (2017), NMX-C-414-ONNCCE-2017 Industria de la Construcción - Cementantes Hidráulicos - Especificaciones y Métodos de Ensayo.

Normas mexicanas del ONNCCE (2015), NMX-C-495-ONNCCE-2015 Industria de la Construcción - Durabilidad de Estructuras de Concreto Reforzado - Medición de Potenciales de Corrosión del Acero de Refuerzo sin Revestir, Embebido en Concreto - Especificaciones y Método de Ensayo.

Normas mexicanas del ONNCCE (2018), NMX-C-553-ONNCCE-2018 Industria de la construcción - Concreto - Durabilidad - Métodos Electroquímicos de Rehabilitación (Intervención) Especializados (Realcalinización y Remoción de Cloruros) - Especificaciones y Métodos de Ensayo

Norma ACI 211.1. Diseño de mezcla de concreto patrón.

Pollet, V., Dieryck, V. (2000), Re - alkalization: specification for the treatment application and acceptance criteria. Annual Progress Report, 1999 - 2000, COST 521, Workshop, Belfast, p. 271.

Raharinaivo and Carpio, J. (1992). The stepping down the current method: a new corrosion control for cathodic protection of steel. Paper No. 228, NACE Conference Corrosion 92, Nashville USA, p. 9.

Hussain, R. R., Tetsuya, I. (2011), Enhanced electro-chemical corrosion model forreinforced concrete under severe coupled actions of chloride and temperature. Construction and Building Materials Journal. Vol. 25, Issue 3. pp. 1305-1315, Elsevier, ISI.

https://doi.org/10.1016/j.conbuildmat.2010.09.014 DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.014

Redaelli, E., Bertolini, L. (2011), Electrochemical repair techniques in carbonated concrete. Part I: electrochemical realkalisation. J Appl Electrochem 41, 817–827. DOI:10.1007/s10800-011-0301-4 DOI: https://doi.org/10.1007/s10800-011-0301-4

Ribeiro, P. H. L. C., Meira, G. R., Ferreira, P. R. R., Perazzo, N. (2013), Electrochemical Realkalisation of Carbonated Concretes – Influence of Material Characteristics and Thickness of Concrete Reinforcement Cover. Elsevier. Construction and Building Materials 40. 280-290. https://doi.org/10.1016/j.conbuildmat.2012.09.076 DOI: https://doi.org/10.1016/j.conbuildmat.2012.09.076

RincoÌn, T., RincoÌn, O. (1994), Electrochemical evolution of mortar based on acrylic and epoxy resins used to repair concrete structures. 1st Mexican Symposium and 2nd International Workshop on Metallic Corrosion, MeÌrida, MeÌxico.

Tong, Y., Bouteiller, V., Marie-Victoire, E. Joiret, S. (2012). Efficiency Investigations of Electrochemical Realkalisation Treatment Applied to Carbonated Reinforced Concret. Part 1: saacrifical anode process. Cem. Concr. Res. 42 (1), 84-94. DOI:10.1016/j.cemconres.2011.08.008 DOI: https://doi.org/10.1016/j.cemconres.2011.08.008

Tuutti, K. (1982). Corrosion of steel in concrete. Report 4.82, The Swedish Cement and Concrete Association, Stockholm.

UNE-EN 1504 Norma de productos y sistemas para la protección y reparación de estructuras de hormigón.

Yeih, W., Chang, J. J. (2005), A study on the efficiency of electrochemical realkalisation of carbonated concrete. Construction and Building Materials 19. 516-524 p. https://doi.org/10.1016/j.conbuildmat.2005.01.006 DOI: https://doi.org/10.1016/j.conbuildmat.2005.01.006

Published
2022-09-01
How to Cite
Paat Estrella, P. E., Miam Cuevas, J. A., Maldonado Bandala, E. E., Perez Lopez, T., & Nieves Mendoza, D. (2022). Electrochemical realkalinization applied to carbonated concrete samples under the criteria of three standards. Revista ALCONPAT, 12(3), 347 - 361. https://doi.org/10.21041/ra.v12i3.619