Potential alkali reactivity of aggregates for concrete in Uruguay. Correlation between mortar bar test and concrete prism (accelerated and traditional test)

  • Patricia Vila Departamento de Construcción, Instituto de Estructuras y Transporte, Facultad de Ingeniería, Universidad de la República, Montevideo
  • Hugo Bonjour Departamento de Construcción, Instituto de Estructuras y Transporte, Facultad de Ingeniería, Universidad de la República, Montevideo
  • Leandro Díaz Departamento de Construcción, Instituto de Estructuras y Transporte, Facultad de Ingeniería, Universidad de la República, Montevideo
  • María Noel Pereyra Departamento de Construcción, Instituto de Estructuras y Transporte, Facultad de Ingeniería, Universidad de la República, Montevideo
Keywords: Expansion, Durability, Alkali-Aggregate Reaction, Tests

Abstract

The correlation between the international criteria to define the reactivity degree in the mortar bar expansion tests and the expansion in concrete prism tests (accelerated and traditional methodology) was analyzed. The three test methodologies were applied experimentally to 19 aggregates samples used for concrete in Uruguay. There were aggregates of different reactivity degree, but no consensus was found in the interpretation by the different techniques. The results are only for the lithologies evaluated and provided background for a relatively new assay methodology. No correlation was observed between the expansion of the mortar bar and in the concrete prism-traditional methodology, but an adequate correlation was observed between both concrete methodologies (accelerated and traditional).

Downloads

Download data is not yet available.

References

Associação Brasileira de Normas Técnicas. (2008). ABNT NBR 15577-1. Agregados - Reatividade álcali-agregado Parte 1: Guia para avaliação da reatividade potencial e medidas preventivas para uso de agregados em concreto.

ASTM International. (2014). ASTM C 1260: Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). http://doi.org/10.1520/C1260-07 DOI: https://doi.org/10.1520/C1260-07

ASTM International. (2019). ASTM C 295: Standard Guide for Petrographic Examination of Aggregates for Concrete. http://doi.org/10.1520/C0295-08 DOI: https://doi.org/10.1520/C0295-08

ASTM International. (2020). ASTM C 1778: Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction. http://doi.org/10.1520/C1778-22 DOI: https://doi.org/10.1520/C1778-22

Falcone, D y Milanesi, C. (2012). Método acelerado del prisma de hormigón. evaluación de la ras con agregados de diversas regiones de la Argentina. V Congreso Internacional - 19º Reunión técnica de la AATH.

Fanijo, E., Kolawole, J., y Almakrab, A. (2021). Alkali-silica reaction (ASR) in concrete structures: Mechanisms, effects and evaluation test methods adopted in the United States. Case Studies in Construction Materials. n° 15. http://doi.org/10.1016/j.cscm.2021.e00563 DOI: https://doi.org/10.1016/j.cscm.2021.e00563

Fournier, B., Bérubé, M.-A., Folliard, K., y Thomas, M. (2010). Report on the diagnosis, prognosis and mitigation of ASR in transportation structures. Federal Highway Administration.

Garber, S., Ideker, J., Ley, T., Williams, S., Juenger, M., Fournier, B., and Thomas, M. (2005). Preventing ASR/DEF in New Concrete: Final Report.

Giovambattista, A., Zerbino, R., Giaccio, G., Fava, C., Milanesi, C., Traversa, L., Iloro, F. (2020). Bases de un código modelo para la tecnología de las obras de hormigón: Anales LEMIT, Serie IV, año 6, n° 13. (L. Tecnológica, Ed.) La Plata, Argentina. https://digital.cic.gba.gob.ar/handle/11746/11068

Godart, B., De Rooij, M., y Wood, J. (2013). RILEM State-of-the-Art Reports Guide to Diagnosis and Appraisal of AAR Damage to Concrete in Structures. http://www.springer.com/series/8780 DOI: https://doi.org/10.1007/978-94-007-6567-2

Gowripalan, N., y Sirivivatnanon, V. (2017). Kinetic based approach for Alkali Silica Reaction-Comparison of laboratory and field tests Fibre Optic sensors for bridge monitoring View project Applications of FRP mesh as reinforcement View project. https://www.researchgate.net/publication/320620011

Instituto Argentino de Normalización y Certificación. (1997). IRAM 1674: Determinación de la reactividad alcalina potencial. Método acelerado de la barra de mortero. Buenos Aires.

Instituto Argentino de Normalización y Certificación. (2012). IRAM 1512. Agregado fino para hormigón de cemento. Buenos Aires.

Instituto Argentino de Normalización y Certificación. (2013). IRAM 1700: Métodos para la determinación del cambio de largo en prismas de hormigón, debido a la reacción álcali-agregado. Buenos Aires.

Instituto Argentino de Normalización y Certificación. (2016). IRAM 1531: Agregado grueso para hormigón de cemento Pórtland. Buenos Aires.

Instituto Uruguayo de Normas Técnicas. (2005). UNIT 1050:2005. Proyecto y ejecución de estructuras de hormigón en masa o armado. Montevideo, Uruguay.

Instituto Uruguayo de Normas Técnicas. (2017). UNIT 20: Cementos pórtland para uso general - Definiciones y requisitos. Montevideo, Uruguay.

Johnston, D., y Fournier, B. (2000). A kinetic-based method for interpreting accelerated mortar bar test (ASTM C1260) data. 11th ICAAR:355-364.

Madsen, L., Falcone, D., Locati, F., Marfil, S., y Rocco, C. (2018). Estudio de barras de mortero y prismas de hormigón elaborados con basaltos de la provincia de corrientes. VIII Congreso Internacional - 22a Reunión técnica de la AATH, págs. 211-218.

Mangialardi, T. (2002). Reconsideration of ASTM C1260 test results in the light of a recent kinetic model. Advances in Cement Research. 14(2):51-60. DOI: https://doi.org/10.1680/adcr.2002.14.2.51

Marfil, P., Falcone, D., Locati, F., y Marfil, S. (2018). Evaluación de la potencialidad reactiva de agregados pétreos de las Sierras Septentrionales de la provincia de Buenos Aires. VIII Congreso Internacional - 22a Reunión técnica de la AATH:211-218.

Méndez, E. (2019). Estrategia integral de prevención de la reacción árido-álcali. (Consejo Superior de Investigaciones Científicas, Ed.) Gobierno de España. https://editorial.csic.es/publicaciones/libros/13219/978-84-00-10516-7/estrategia-integral-de-prevencion-de-la-reaccion-a.html

Nixon, P., y Sims, I. (2016). RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures (Vol. 17). http://doi.org/10.1007/978-94-017-7252-5 DOI: https://doi.org/10.1007/978-94-017-7252-5

Sims, I., y Poole, A. (2017). Alkali-Aggregate Reaction in Concrete: A World review.

Torres, A. (2014). Estudio Experimental sobre la reacción álcali-sílice en el hormigón producida por áridos de reacción lenta. Tesis doctoral, Universidad Politécnica de Madrid.

Veroslavsky Barbe, G., Ubilla Gutierrez, M., y Martinez Chiappara, S. (2004a). Cuencas sedimentarias de Uruguay: geología, paleontología y recursos naturales: Mesozoico. Montevideo, Uruguay.

Veroslavsky Barbe, G., Ubilla Gutierrez, M., y Martinez Chiappara, S. (2004b). Cuencas sedimentarias de Uruguay: geología, paleontología y recursos naturales: Cenozoico. Montevideo, Uruguay.

Vila, P., Bonjour, H., y Pereyra, M. (2020). Análisis cinético para la interpretación de los resultados de expansión por reacción álcali-sílice en barras de mortero y de hormigón. IX Congreso Internacional y 23ª Reunión Técnica, págs. 221-228.

Published
2022-12-29
How to Cite
Vila, P., Bonjour, H., DíazL., & Pereyra, M. N. (2022). Potential alkali reactivity of aggregates for concrete in Uruguay. Correlation between mortar bar test and concrete prism (accelerated and traditional test). Revista ALCONPAT, 13(1), 45 - 60. https://doi.org/10.21041/ra.v13i1.608