Modifications of the rupture envelope in clayey soils with different volumetric stabilizer

  • A. Sánchez Faculty of Architecture, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • Elia Mercedes Alonso Guzmán Universidad Michoacana de San Nicolás de Hidalgo https://orcid.org/0000-0002-8502-4313
  • Wilfrido Martínez Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • H. Chávez Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • M. Navarrete Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • M. Arreola Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • J. Borrego Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • L. Equihua Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • E. Núñez Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
  • O. Miranda Materials Department, Faculty of Civil Engineering, Universidad Michoacana San Nicolás de Hidalgo, Morelia
Keywords: soil stabilization, mechanical properties, shear strength, cutting, cohesion, angle of internal friction, restoration

Abstract

The modifications of seven different stabilizers (lime, cement, nopal fibers, river sand, volcanic sand, sodium sulphate and gypsum) on a clayey soil of Santiago Undameo, in Michoacan, Mexico, were analyzed to observe the changes in the properties and the rupture envelope. Sieve analysis, hydraulic sedimentation, index properties, compressive strength and Proctor were performed to the natural soil; while the variation of the index properties and the rupture envelope were determined for the stabilized mixtures. The additions improved the behavior of the high plasticity soil, diminishing the volumetric deformations and increasing the mechanical resistance, shear strength and angle of internal friction. This research contributes positively to the restoration of earthen heritage buildings, civil works, construction pathologies and construction technologies. The research was performed in the laboratory under international standards.

Downloads

Download data is not yet available.

References

Abhilash, H. N., Hamard, E., Beckett, C. T., Morel, J.-C., Varum, H., Silveira, D., Ilampas, R. (2022), Chapter 4. Mechanical Behaviour of Earth Building Materials. En A. Fabbri, J.-C. Morel, J.-E. Aubert, Q.-B. Bui, D. Gallipoli, B. V. Venkatarama Reddy (Eds.), “Testing and Characterisation of Earth-based Building Materialsâ€, Springer, cap. 4, pp. 127-180. doi: https://doi.org/10.1007/978-3-030-83297-1_4 DOI: https://doi.org/10.1007/978-3-030-83297-1_4

Akkaya, İ., Özvan, A., Özvan, E. E. (2019), A new empirical correlation between pressuremeter modules (EM) and shear wave velocity (Vs) for clay soils. Journal of Applied Geophysics. 171(103865). https://doi.org/10.1016/j.jappgeo.2019.103865 DOI: https://doi.org/10.1016/j.jappgeo.2019.103865

Alonso, E., Martinez-Gomez, L., Martinez, W., & Castano, V. M. (2002), Preparation and Characterisation of Ancient-Like Masonry Mortars. Advanced Composite Letters. 11(1). doi: https://doi.org/10.1177/096369350201100105 DOI: https://doi.org/10.1177/096369350201100105

Araya-Letelier, G., Antico, F. C., Burbano-García, C., Concha-Riedel, J., Norambuena-Contreras, J., Concha, J., & Saavedra Flores, E. I. (2021), Experimental evaluation of adobe mixtures reinforced with jute fibers. Construction and Building Materials. 276(122127). doi: https://doi.org/10.1016/j.conbuildmat.2020.122127 DOI: https://doi.org/10.1016/j.conbuildmat.2020.122127

Asociación Española de Normalización y Certificación (AENOR). (1998). UNE 103402: Determinación de los Parámetros Resistencia de Una Muestra de Suelo en el Equipo Triaxial.

Asociación Española de Normalización (AENOR) (2019), UNE-EN ISO 17892-8:2019 Investigación y ensayos geotécnicos; Ensayos de laboratorio de suelos, Parte 8: ISO 17892-8:2018 Ensayo triaxial sin consolidación y sin drenaje.

ASTM International (2019), ASTM C136/C136M-19 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. doi: https://doi.org/10.1520/C0136_C0136M-19 DOI: https://doi.org/10.1520/C0136_C0136M-19

ASTM International (2017), ASTM D7928-17 Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. doi: https://doi.org/10.1520/D7928-17 DOI: https://doi.org/10.1520/D7928-17

ASTM International (2017). ASTM D2487-17 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). doi: https://doi.org/10.1520/D2487-17 DOI: https://doi.org/10.1520/D2487-17

ASTM International (2017). ASTM D4318-17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. doi: https://doi.org/10.1520/D4318-17 DOI: https://doi.org/10.1520/D4318-17

ASTM International (2021). ASTM D698-12e2 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3(600 kN-m/m3)). doi: https://doi.org10.1520/D0698-12R21

ASTM International (2015). ASTM D2850-15 Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. doi: https://doi.org/10.1520/D2850-15 DOI: https://doi.org/10.1520/D2850-15

ASTM International. (2007) ASTM D421-85 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants (Withdrawn 2016).

ASTM International (1998). ASTM D 422-63 (Reapproved 1998) Standard Test Method for Particle-Size Analysis of Soils.

Chompoorat, T., Thepumong, T., Khamplod, A., Likitlersuang, S. (2022), Improving mechanical properties and shrinkage cracking characteristics of soft clay in deep soil mixing. Construction and Building Materials. 316(125858). https://doi.org/10.1016/j.conbuildmat.2021.125858 DOI: https://doi.org/10.1016/j.conbuildmat.2021.125858

Costa, C., Cerqueira, Â., Rocha, F., & Velosa, A. (2019), The sustainability of adobe construction: past to future. International Journal of Architectural Heritage. 13: 639-647. doi: https://doi.org/10.1080/15583058.2018.1459954 DOI: https://doi.org/10.1080/15583058.2018.1459954

Daneels, A., Romo de Vivar, A., Chávez, L., Reyes, M., Tapia, E., León, M., . . . Otero, F. J. (2020), Bitumen-stabilized earthen architecture: The case of the archaeological site of La Joya, on the Mexican Gulf Coast. Journal of Archaeological Science: Reports, 34(A). doi: https://doi.org/10.1016/j.jasrep.2020.102619 DOI: https://doi.org/10.1016/j.jasrep.2020.102619

Díaz-Blanco, Y., Menchaca-Campos, C., Rocabruno-Valdés, C. I., Uruchurtu-Chavarín J. (2019), Influencia de un aditivo natural (mucílago de nopal) en las propiedades electroquímicas del acero de refuerzo del concreto. Revista ALCONPAT. 9 (3): 260- 276. doi: http://dx.doi.org/10.21041/ra.v9i3.429 DOI: https://doi.org/10.21041/ra.v9i3.429

Flores Rentería, A. (2010), “La norma ASTM D6276 como instrumento de estabilización de suelos para fines patrimonialesâ€. Tesis de Licenciatura, Facultad de Ingeniería Civil, Universidad Michoacana San Nicolás de Hidago.

Kalifala, D., Ouedraogo, M., Millogo, Y., Aubert, J. E., Gomina, M. (2018), Thermal, hydric and mechanical behaviours of adobes stabilized with cement, Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2017.10.001 DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.001

Knapen, E., Van Gemert, D. (2009), Cement hydration and microstructure formation in the presence of water-soluble polymers. Cement and Concrete Research. 39(1): 6-13. doi: https://doi.org/10.1016/j.cemconres.2008.10.003 DOI: https://doi.org/10.1016/j.cemconres.2008.10.003

Ige, O. and Danso, H. (2021), Physico-mechanical and thermal gravimetric analysis of adobe masonry units reinforced with plantain pseudo-stem fibres for sustainable construction. Construction and Building Materials. 273(121686). https://doi.org/10.1016/j.conbuildmat.2020.121686 DOI: https://doi.org/10.1016/j.conbuildmat.2020.121686

Jitha P. T., Sunil Kumar B., Raghunath, S. (2020), Strength development and masonry properties of geopolymer stabilised soil-LPC (lime-pozzolana cement) mixes. Construction and Building Materials. 250(118877). https://doi.org/10.1016/j.conbuildmat.2020.118877 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118877

Laborel-Préneron, A., Faria, P., Aubert, J.-E., Magniont, C. (2021), Assessment of Durability of Bio-based Earth Composites. Recent Progress in Materials. 3(2). doi:10.21926/rpm.2102016 DOI: https://doi.org/10.21926/rpm.2102016

Lan Guanqi, L., Yihong Wan, Y., Xin, L., Liu, Y. (2020), Shear test method analysis of earth block masonry mortar joints. Construction and Building Materials. 264 (119997). https://doi.org/10.1016/j.conbuildmat.2020.119997 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119997

Li Piani, T., Weerheijm, j., Peroni, M., Koene, L., Krabbenborg D., Solomos, G., Sluys, L. J. (2020), Dynamic behaviour of adobe bricks in compression: The role of fibres and water content at various loading rates, Construction and Building Materials. 230(117038). https://doi.org/10.1016/j.conbuildmat.2019.117038 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117038

Martínez, W., Alonso, E. M., Rubio, J. C., Bedolla, J. A., Velasco, F. A., Torres, A. A. (2008), Comportamiento Mecánico de Morteros de Cal Apagada Artesanalmente, Adicionados con Mucílago de Cactácea y Ceniza Volcánica, para su uso en Restauración y Conservación de Monumentos Coloniales. Revista de la Construcción. 7(2): 93-101.

Martínez, W., Torres-Acosta, A. A., Alonso-Guzmán, E. M., Chávez, H. L., Lara, C., Bedolla, A., Ruvalcaba, J. L. (2018), Colorimetry of clays modified with mineral and organic additives. Revista ALCONPAT. 8(2):163-177. https://doi.org/10.21041/ra.v8i2.277 DOI: https://doi.org/10.21041/ra.v8i2.277

Mauricio, A. C., Grieseler, R., Heller, A. R., Kelley, A. R., Rumiche, F., Sandweiss, D. H., Viveen, W. (2021), The earliest adobe monumental architecture in the Americas. PNAS, 118(48). doi: https://doi.org/10.1073/pnas.2102941118 DOI: https://doi.org/10.1073/pnas.2102941118

Miranda Leal O. S. (2017), “Envolvente de falla en arcilla de Santiago Undameo, con diferentes estabilizadores; realizados en la máquina triaxial Soiltest t-500â€. Tesis de Licenciatura, Facultad de Ingeniería Civil, Universidad Michoacana San Nicolás de Hidalgo.

Mirjalili, A., Eslami, A., Morshed, R. (2020), Experimental investigation into the effect of vertical loading on in-plane cyclic behavior of adobe walls. Construction and Building Materials. 264(120706). https://doi.org/10.1016/j.conbuildmat.2020.120706 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120706

Moraes, J. C., Akasaki, J. L., Melges, J. L., Monzó, J., Borrachero, M. V., Soriano, L., . . . Tashima, M. M. (2015), Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars. Construction and Building Materials. 94: 670-677. doi: https://doi.org/10.1016/j.conbuildmat.2015.07.108 DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.108

Nagaraj, H. B., Sravan, M. V., Arun, T. G., & Jagadish, K. S. (2014), Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks. International Journal of Sustainable Built Environment. 3(1): 54-61. doi: https://doi.org/10.1016/j.ijsbe.2014.03.001 DOI: https://doi.org/10.1016/j.ijsbe.2014.03.001

Navarro Mendoza, E. G., Sánchez Calvillo, A., Alonso Guzmán, E. M. (2019), “Estabilización de suelos arcillosos con cal para firmes y blocksâ€. En C. Neves, Z. Salcedo Gutiérrez, O. Borges Faria (Eds.), 19º Seminario Iberoamericano de Arquitectura y Construcción con Tierra, FUNDASAL / PROTERRA). San Salvador: El Salvador, pp. 284-291.

Ojeda Farías, O. F., Baltazar Zamora, M. Ã., Mendoza Rangel, J. M. (2018), Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT. 8(2): 194-208. doi: https://doi.org/10.21041/ra.v8i2.282 DOI: https://doi.org/10.21041/ra.v8i2.282

Olacia, E., Pisello, A. L., Chiodo, V., Maisano, S., Frazzica, A., Cabeza, L. F. (2020), Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Construction and Building Materials. 239(117669). https://doi.org/10.1016/j.conbuildmat.2019.117669 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117669

Parisi, F., Balestrieri, C., Varum, H. (2019), Nonlinear finite element model for traditional adobe masonry. Construction and Building Materials. 223: 450-462. https://doi.org/10.1016/j.conbuildmat.2019.07.001 DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.001

Pérez Nora, A., Bucio, L., Lima, E., Soto, E., Cedillo, C. (2016), Identification of allophane and other semi-crystalline and amorphous phases on pre-Hispanic Mexican adobe earth bricks from Cholula, Mexico. Microchemical Journal. 126(349-358). https://doi.org/10.1016/j.microc.2015.12.033 DOI: https://doi.org/10.1016/j.microc.2015.12.033

Rodríguez-Mariscal, J. D., Solís, M., Cifuentes, H. (2018), Methodological issues for the mechanical characterization of unfired earth bricks. Construction and Building Materials. 175: 804-814. https://doi.org/10.1016/j.conbuildmat.2018.04.118 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.118

Ramírez-Arellanes, S., Cano-Barrita, P. F. de J., Julián-Caballero, F., Gómez-Yañez, C. (2012), Propiedades de durabilidad en concreto y análisis microestructural en pastas de cemento con adición de mucílago de nopal como aditivo natural. Materiales de Construcción. 62(307): 327– 341. doi: https://doi.org/10.3989/mc.2012.00211 DOI: https://doi.org/10.3989/mc.2012.00211

Reginaldo-Sérgio, P., Fabiano-Emmert, E., Pereira-Miguel A. G. (2018), Soil Stabilization with Lime for the Construction of Forest Roads. Floresta e Ambiente. 25(2). https://doi.org/10.1590/2179-8087.007715 DOI: https://doi.org/10.1590/2179-8087.007715

Sanchez-Calvillo, A., Alonso-Guzman, E. M., Martinez-Molina, W., Navarrete-Seras, M. A., Ruvalcaba-Sil, J. L., Navarro-Ezquerra, A., Mitrani, A. (2021), Characterization of adobe blocks: Point-load assessment as a complementary study of damaged buildings and samples. Heritage. 4(2): 864-888. doi: https://doi.org/10.3390/heritage4020047 DOI: https://doi.org/10.3390/heritage4020047

Secretaría de Comunicaciones y Transportes (SCT) (2007), M-MMP-1-07/07. Límites de Consistencia.

Secretaría de Comunicaciones y Transportes (SCT) (2006), M-MMP-1-09/06. Métodos de muestreo y prueba de materiales. Compactación AASHTO.

Sharma, V., Vinayak, H. K., & Marwaha, B. M. (2015), Enhancing sustainability of rural adobe houses of hills by addition of vernacular fiber reinforcement. International Journal of Sustainable Built Environment. 4(2): 348-358. https://doi.org/10.1016/j.ijsbe.2015.07.002 DOI: https://doi.org/10.1016/j.ijsbe.2015.07.002

Skempton, A. W. (1953). “The colloidal activity of clays†en: Proceedings of the third international conference on soil mechanics and foundation engineering. ICOSOMEF, Zurich: Switzerland, pp. 57-61.

Taallah, B., Guettala, A. (2016), The mechanical and physical properties of compressed earth block stabilized with lime and filled with untreated and alkali-treated date palm fibers. Construction and Building Materials. 104(1): 52-62. doi: https://doi.org/10.1016/j.conbuildmat.2015.12.007 DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.007

Vasic M.V., Pezo, L. L., Radojevic, Z. (2020), Optimization of adobe clay bricks based on the raw material properties (mathematical analysis). Construction and Building Materials. 244(118342). https://doi.org/10.1016/j.conbuildmat.2020.118342 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118342

Wang, C., Li, S., He, X., Chen, Q., Zhang, H., & Liu, X. (2021), Improved prediction of water retention characteristic based on soil gradation and clay fraction. Geoderma. 404(115293). https://doi.org/10.1016/j.geoderma.2021.115293 DOI: https://doi.org/10.1016/j.geoderma.2021.115293

Wu, B., Li, L., Xu, L., Li, X. (2022), Modelling sheet erosion on steep slopes of clay loess soil using a rainfall simulator. Biosystems Engineering. 216:1-12. https://doi.org/10.1016/j.biosystemseng.2022.01.017 DOI: https://doi.org/10.1016/j.biosystemseng.2022.01.017

Yetgin, Ş., Çavdar, Ö., Çavdar, A. (2008), The effects of the fiber contents on the mechanic properties of the adobes. Construction and Building Materials. 22(3): 222-227. https://doi.org/10.1016/j.conbuildmat.2006.08.022 DOI: https://doi.org/10.1016/j.conbuildmat.2006.08.022

Published
2022-05-01
How to Cite
Sánchez, A., Alonso Guzmán, E. M., MartínezW., Chávez, H., Navarrete, M., Arreola, M., Borrego, J., Equihua, L., NúñezE., & Miranda, O. (2022). Modifications of the rupture envelope in clayey soils with different volumetric stabilizer. Revista ALCONPAT, 12(2), 227 - 247. https://doi.org/10.21041/ra.v12i2.595