Analysis of concrete characteristics with the replacement of natural fine aggregate by industrial solid waste
Abstract
The objective of this study includes the use of solid industrial waste to improve the mechanical properties of cementitious composites. To this end, the incorporation of granite gravel dust and marble dust in the manufacture of cement-based composites was evaluated, partially replacing the natural fine aggregate at levels of 50% and 100%. For this, characterization tests of the aggregates were performed, besides the evaluation of the axial compressive strength of the specimens. The results showed that the mixtures containing 50% recycled aggregate gave the material a compressive strength of 29.09 MPa, i.e., 4% higher when compared to the reference mixtures, making the results satisfactory, demonstrating the feasibility of recycled aggregates in concrete pieces.
Downloads
References
ABNT – Associação Brasileira de Normas Técnicas. (1998). NBR NM 67: Concreto –Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro.
ABNT – Associação Brasileira de Normas Técnicas. (2003), NBR NM 248: Agregados – Determinação da composição granulométrica. Rio de Janeiro, 2003.
ABNT – (2015), NBR 5738: Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro.
ABNT – (2018), NBR 5739: Concreto – Ensaio de compressão de corpos de prova cilÃndricos. Rio de Janeiro.
ABNT – Associação Brasileira de Normas Técnicas. (2014), NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro.
ABNT – Associação Brasileira de Normas Técnicas. (2009), NBR 7211: Agregados para concreto Especificação. Rio de Janeiro.
ABNT – Associação Brasileira de Normas Técnicas. (1982), NBR 7251: Agregado em estado solto – Determinação da massa unitária. Rio de Janeiro.
ABNT – Associação Brasileira de Normas Técnicas. (2015), NBR 8953: Concreto para fins estruturais – Classificação pela massa especÃfica, por grupos de resistência e consistência. Rio de Janeiro.
ABNT – Associação Brasileira de Normas Técnicas. (1987), NBR 9776: Agregados – Determinação da massa especÃfica de agregados miúdos por meio do frasco Chapman. Rio de Janeiro.
ABNT – Associação Brasileira De Normas Técnicas. (2004), NBR 15116: Agregados reciclados de resÃduos sólidos da construção civil: Utilização em pavimentação e preparo de concreto sem função estrutural – Requisitos. Rio de Janeiro.
Aliabdo, A. A., Elmoaty, A. E. M. A., Auda, E. M. (2014), Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials. 50(1):28-41. http://dx.doi.org/10.1016/j.conbuildmat.2013.09.005 DOI: https://doi.org/10.1016/j.conbuildmat.2013.09.005
Ali, M. M., Hashmi, S. M. (2014), An Experimental investigation on strengths characteristics of concretewith the partial replacement of Cement by Marble Powder dust and Sandby Stone duste. IJSRD – International Journal for Scientific Research & Development. 2(7):360-368.
Andrade, J. J. O., Possan, E., Squiavon, J. Z., Ortolan, T. L. P. (2018), Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Construction and Building Materials. 161(1):70-83. http://dx.doi.org/10.1016/j.conbuildmat.2017.11.089 DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.089
Arshad, A., Shahid, I., Anwar, U. H. C., Baig, M. N., Khan, S., Shakir, K. (2014), The Wastes Utility in Concrete. International Journal of Environmental Research. 8(4):1-20. http://dx.doi.org/10.22059/ijer.2014.825
Azevedo, A. R. G., Vieira, C. M. F., Ferreira, W. M., Faria, K. C. P., Pedroti, L. G., Mendes, B. C. (2020), Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. Journal of Building Engineering, 29(1). http://dx.doi.org/10.1016/j.jobe.2019.101156 DOI: https://doi.org/10.1016/j.jobe.2019.101156
Barros, E., Fucale, S. (2016), O uso de resÃduos da construção civil como agregados na produção de concreto. Revista de Engenharia e Pesquisa Aplicada. 2(1). http://dx.doi.org/10.25286/repa.v2i1.343 DOI: https://doi.org/10.25286/repa.v2i1.343
Brandão, R., Edwards, D. J., Hosseini, M. R., Melo, A. C. S., Macêdo, A. N. (2021), Reverse supply chain conceptual model for construction and demolition waste. Waste Management & Research: The Journal for a Sustainable Circular Economy. 39(11):1341-1355. http://dx.doi.org/10.1177/0734242x21998730 DOI: https://doi.org/10.1177/0734242X21998730
Cipriano, P. B., Galdino, T. S. G., Sá, C. S., Ferraz, A. V. (2021), Avaliação dos parâmetros de calcinação do resÃduo de gesso nas propriedades do gesso reciclado. Matéria (Rio de Janeiro). 26(3). http://dx.doi.org/10.1590/s1517-707620210003.13026 DOI: https://doi.org/10.1590/s1517-707620210003.13026
Geng, G., Li, J., Zhou, Y., Liu, L., Yan, J., Kunz, M., Monteiro, P. J. M. (2018), A high-pressure X-ray diffraction study of the crystalline phases in calcium aluminate cement paste. Cement and Concrete Research. 108(1):38-45. http://dx.doi.org/10.1016/j.cemconres.2018.03.004 DOI: https://doi.org/10.1016/j.cemconres.2018.03.004
Hebhoub, H., Aoun, H., Belachia, M., Houari, H., Ghorbel, E. (2011), Use of waste marble aggregates in concrete. Construction and Building Materials. 25(3):1167-1171. http://dx.doi.org/10.1016/j.conbuildmat.2010.09.037 DOI: https://doi.org/10.1016/j.conbuildmat.2010.09.037
Kashani, A., Ngo, T. D., Mendis, P., Black, K. R., Hajimohammadi, A. (2017), A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete. Journal of Cleaner Production. 17(3):1-32. https://doi.org/10.1016/j.jclepro.2017.02.154 DOI: https://doi.org/10.1016/j.jclepro.2017.02.154
Klepa, R. B., Medeiros, M. F., Franco, M. A. C., Tamberg, E. T., Farias, T. H. B., Paschoalin Filho, J. A., Berssaneti, F. T., Santana, J. C. C. (2019), Reuse of construction waste to produce thermoluminescent sensor for use in highway traffic control. Journal of Cleaner Production. 209(1):250-258. http://dx.doi.org/10.1016/j.jclepro.2018.10.225 DOI: https://doi.org/10.1016/j.jclepro.2018.10.225
Mechtcherine, V., Michel, A., Liebscher, M., Schneider, K., Großmann, C. (2020), Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: material and automation perspectives. Automation in Construction. 110(1):1-8. http://dx.doi.org/10.1016/j.autcon.2019.103002 DOI: https://doi.org/10.1016/j.autcon.2019.103002
Meena, R. V., Chouhan, H. S., Jain, J. K., Satankar, R. K. (2021), Construction and Demolition Waste as an Alternative of Rigid Pavement Material: a review. Iop Conference Series: Earth and Environmental Science. 795(1). http://dx.doi.org/10.1088/1755-1315/795/1/012019 DOI: https://doi.org/10.1088/1755-1315/795/1/012019
Mohajerani, A., Burnett, L., Smith, J. V., Markovski, S., Rodwell, G., Rahman, M. T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. (2020), Recycling waste rubber tyres in construction materials and associated environmental considerations: a review. Resources, Conservation and Recycling. 155(1). http://dx.doi.org/10.1016/j.resconrec.2020.104679 DOI: https://doi.org/10.1016/j.resconrec.2020.104679
Nascimento, C. F. G., Monteiro, E. C. B., Silva e Souza, M. G., Teixeira, I. A. R., Vale, L. J. S., Valões, D. C. P., Cavalcanti, L. R., Figueira, A. M. A., Pedrosa, P. G. V. (2020), Viabilidade da substituição parcial do resÃduo de construção civil pelo agregado miúdo nas propriedades fÃsicas e mecânicas do concreto. Brazilian Journal of Development. 6(8):62073-62081. https://doi.org/10.34117/bjdv6n8-581 DOI: https://doi.org/10.34117/bjdv6n8-581
Nascimento, C. F. G., Silva, T. M., Teixeira, I. A. R., Silva, F. G. A., Neves, D. C. M., Pedrosa, P. G. V., Valões, D. C. P., Monteiro, E. C. B. (2021), Influência do agregado reciclado na durabilidade do concreto armado frente a corrosão de armadura desencadeada por carbonatação acelerada. Conjecturas. 21(4):569-599. http://dx.doi.org/10.53660/conj-237-801 DOI: https://doi.org/10.53660/CONJ-237-801
Nguyen, Q. D., Castel, A. (2020), Reinforcement corrosion in limestone flash calcined clay cement-based concrete. Cement And Concrete Research. 132(1):1-15. http://dx.doi.org/10.1016/j.cemconres.2020.106051 DOI: https://doi.org/10.1016/j.cemconres.2020.106051
Oliveira, P. S., Antunes, M. L. P., Cruz, N. C., Rangel, E.C., Azevedo, A. R. G., Durrant, S. F. (2020), Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction. Journal of Cleaner Production. 274(1). http://dx.doi.org/10.1016/j.jclepro.2020.122948 DOI: https://doi.org/10.1016/j.jclepro.2020.122948
Paiva, F. F. G., Tamashiro, J. R., Silva, L. H. P., Kinoshita, A. (2021), Utilization of inorganic solid wastes in cementitious materials – A systematic literature review. Construction and Building Materials. http://dx.doi.org/10.1016/j.conbuildmat.2021.122833 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122833
Rodrigues, R., Brito, J., Sardinha, M. (2015), Mechanical properties of structural concrete containing very fine aggregates from marble cutting sludge. Construction and Building Materials. 77(1):349-356. http://dx.doi.org/10.1016/j.conbuildmat.2014.12.104 DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.104
Shukla, A., Gupta, N., Gupta, A. (2020), Development of green concrete using waste marble dust. Materials Today: Proceedings. 26(1):2590-2594. http://dx.doi.org/10.1016/j.matpr.2020.02.548 DOI: https://doi.org/10.1016/j.matpr.2020.02.548
Silva, J. A., Piva, J. H., Wanderlind, A., Savi, A. E., Antunes, E. G. P. (2021), Análise das caracterÃsticas fÃsicas e propriedades mecânicas de argamassa com inserção de resÃduos de madeira. Matéria (Rio de Janeiro). 26(3). http://dx.doi.org/10.1590/s1517-707620210003.13008 DOI: https://doi.org/10.1590/s1517-707620210003.13008
Thapa, V., Waldmann, D. (2021), Binary blended cement pastes and concrete using gravel wash mud (GWM) powders. Construction and Building Materials. 302(1). http://dx.doi.org/10.1016/j.conbuildmat.2021.124225 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124225
Souza, F. C. (2019), Avaliação de propriedades mecânicas e fÃsicas do concreto com a adição de pó de brita. Trabalho apresentado como requisito para obtenção do tÃtulo de bacharel no Curso de Graduação em Engenharia Civil de Infraestrutura do Centro Tecnológico de Joinville da Universidade Federal de Santa Catarina. Joinville.
Varadharajan, S., Jaiswal, A., Verma, S. (2020), Assessment of mechanical properties and environmental benefits of using rice husk ash and marble dust in concrete. Structures. 28(1):389-406. http://dx.doi.org/10.1016/j.istruc.2020.09.005 DOI: https://doi.org/10.1016/j.istruc.2020.09.005
Zhen, Y., Liu, B. (2021), Experimental Study on the Performance of Improved Collapsible Loess Mixture with Concrete Crushed Gravel. Iop Conference Series: Earth and Environmental Science. 781(2). http://dx.doi.org/10.1088/1755-1315/781/2/022068 DOI: https://doi.org/10.1088/1755-1315/781/2/022068
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.