Alternative activators in alkali activated cements
Abstract
Alkali activated cements (AAC) require an alkaline component for activating of the precursor. The manufacture of the alkaline activator (AA) involves a very important energy and raw material consumption, so that the carbon footprint (CF) of AAC is basically influenced by this factor. An alternative is the use of other materials for AA preparation. In this work an exhaustive analysis of the different alternatives is carried out: silica-based materials to prepare of alternative silicates and alkaline-based materials. CF is compared relative to commercial Portland cements, and the effect of replacing commercial reagents with alternative activators is analyzed.
Downloads
References
Alonso, M. M., Gascó, C., Morales, M. M., Suárez-Navarro, J. A., Zamorano, M., Puertas, F. (2019). Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, durability, radiology and leaching behaviour. Cem. Concr. Compos. 104, 103384. https://doi.org/10.1016/j.cemconcomp.2019.103384 DOI: https://doi.org/10.1016/j.cemconcomp.2019.103384
Ban, C. C., Nordin, N. S. A., Ken, P. W., Ramli, M., Hoe, K. W. (2014). The high volume reuse of hybrid biomass ash as a primary binder in cementless mortar block. Am. J. Appl. Sci. 11, 1369–1378. https://doi.org/10.3844/ajassp.2014.1369.1378 DOI: https://doi.org/10.3844/ajassp.2014.1369.1378
Bejarano, J., Garazón, C., MejÃa de Gutiérrez, R., Delvasto, S., Gordillo, M. (2010). In: II Simposio Aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción, Valencia, Spain, November 8-9, 2010
Bernal, S. A., RodrÃguez, E. D., Mejia De Gutiérrez, R., Provis, J. L., Delvasto, S. (2012). Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor. 3, 99–108. https://doi.org/10.1007/s12649-011-9093-3 DOI: https://doi.org/10.1007/s12649-011-9093-3
Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Mater. Lett. 115, 72-74. https://doi.org/10.1016/j.matlet.2013.10.001 DOI: https://doi.org/10.1016/j.matlet.2013.10.001
Choo, H., Lim, S., Lee, W., Lee, C. (2016). Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr. Build. Mater. 125, 21–28. https://doi.org/10.1016/j.conbuildmat.2016.08.015 DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.015
De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Constr. Build. Mater. 178, 327–338. https://doi.org/10.1016/j.conbuildmat.2018.05.157 DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.157
Fernández-Jiménez, A., Cristelo, N., Miranda, T., Palomo, A. (2017). Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. J. Clean. Prod. 162, 1200–1209. https://doi.org/10.1016/j.jclepro.2017.06.151 DOI: https://doi.org/10.1016/j.jclepro.2017.06.151
Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Mater. Lett. 203, 46-49. https://doi.org/10.1016/j.matlet.2017.05.129 DOI: https://doi.org/10.1016/j.matlet.2017.05.129
Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Mater. Lett. 223, 10–13. https://doi.org/10.1016/j.matlet.2018.04.010 DOI: https://doi.org/10.1016/j.matlet.2018.04.010
Font, A., Soriano, L., de Moraes Pinheiro, S. M., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2020). Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. J. Clean. Prod. 243, 118568. https://doi.org/10.1016/j.jclepro.2019.118568 DOI: https://doi.org/10.1016/j.jclepro.2019.118568
EN 197-5, 2021. Cement - Part 5: Portland-composite cement CEM II/C-M and Composite cement CEM VI.
Gao, X., Yu, Q. L., Lazaro, A., Brouwers, H. J. H. (2017). Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: Reaction kinetics, gel structure and carbon footprint. Cem. Concr. Res. 100, 129–139. https://doi.org/10.1016/j.cemconres.2017.06.007 DOI: https://doi.org/10.1016/j.cemconres.2017.06.007
Hall, C. (1976). On the history of portland cement after 150 years. Journal of Chemical Education, 53(4), 222. DOI: https://doi.org/10.1021/ed053p222
Jamieson, E., van Riessen, A., McLellan, B., Penna, B., Kealley, C., Nikraz, H. (2017). Introducing Bayer liquor-derived geopolymers. In: Handbook of low carbon concrete. Nazari, A. and Sanjayan, J.G. (eds), Kidlington, Oxford, United States: Elsevier.159-193. https://doi.org/10.1016/B978-0-12-804524-4.00008-7 DOI: https://doi.org/10.1016/B978-0-12-804524-4.00008-7
Keijer, T., Bakker, V., Slootweg, J. C. (2019). Circular chemistry to enable a circular economy. Nature Chem 11, 190–195. https://doi.org/10.1038/s41557-019-0226-9 DOI: https://doi.org/10.1038/s41557-019-0226-9
Liu, Y., Shi, C., Zhang, Z., Li, N. (2019). An overview on the reuse of waste glasses in alkali-activated materials. Resour. Conserv. Recycl. 144, 297–309. https://doi.org/10.1016/j.resconrec.2019.02.007 DOI: https://doi.org/10.1016/j.resconrec.2019.02.007
Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., Illikainen, M. (2018). One-part alkali-activated materials: A review. Cem. Concr. Res. https://doi.org/10.1016/j.cemconres.2017.10.001 DOI: https://doi.org/10.1016/j.cemconres.2017.10.001
MejÃa, J. M., MejÃa De Gutiérrez, R., Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 118, 133–139. https://doi.org/10.1016/j.jclepro.2016.01.057 DOI: https://doi.org/10.1016/j.jclepro.2016.01.057
Mohan, S. V., Katakojwala, R. (2021). The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0, Current Opinion in Green and Sustainable Chemistry,
, 100434. https://doi.org/10.1016/j.cogsc.2020.100434 DOI: https://doi.org/10.1016/j.cogsc.2020.100434
Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Constr. Build. Mater. 171, 611–621. https://doi.org/10.1016/j.conbuildmat.2018.03.230 DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.230
PavÃa, S., Caro, S. (2008). An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Cons. Build. Mat. 22, 1807-1811. https://doi.org/10.1016/j.conbuildmat.2007.05.003 DOI: https://doi.org/10.1016/j.conbuildmat.2007.05.003
Payá, J., Monzó, J., Roselló, J., Borrachero, M. V., Font, A., Soriano, L. (2020). Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA). Sustain. 12, 1–15. https://doi.org/10.3390/su12239824 DOI: https://doi.org/10.3390/su12239824
Peys, A., Rahier, H., Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Appl. Clay Sci. 119, 401–409. https://doi.org/10.1016/j.clay.2015.11.003 DOI: https://doi.org/10.1016/j.clay.2015.11.003
Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green chemistry, 8(9), 763-780. DOI: https://doi.org/10.1039/b603997a
Rajan, H. S., Kathirvel, P. (2021). Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste. J. Clean. Prod. 286, 124959. https://doi.org/10.1016/j.jclepro.2020.124959 DOI: https://doi.org/10.1016/j.jclepro.2020.124959
Roselló, J., Soriano, L., Santamarina, M. P., Akasaki, J. L., José Luiz P. Melges, J. L. P., Payá, J. (2015). Microscopy characterization of silica-rich agrowastes to be used in cement binders: bamboo and sugarcane leaves. Microsc. Microanal. 21, 1314–1326. https://doi.org/10.1017/S1431927615015019 DOI: https://doi.org/10.1017/S1431927615015019
Rouseková, I., Bajza, A., Živica, V. (1997). Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. Cem. Concr. Res. 27, 1825-1828. https://doi.org/10.1016/S0008-8846(97)00191-9 DOI: https://doi.org/10.1016/S0008-8846(97)00191-9
Soriano, L., Font, A., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2020). One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Mater. Lett. 272, 127882. https://doi.org/10.1016/j.matlet.2020.127882 DOI: https://doi.org/10.1016/j.matlet.2020.127882
Tchakouté, H. K., Rüscher, C. H., Hinsch, M., Djobo, J. N. Y., Kamseu, E., Leonelli, C. (2017). Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chemie der Erde 77, 257–266. https://doi.org/10.1016/j.chemer.2017.04.003 DOI: https://doi.org/10.1016/j.chemer.2017.04.003
Tong, K. T., Vinai, R., Soutsos, M. N. (2018). Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J. Clean. Prod. 201, 272–286. https://doi.org/10.1016/j.jclepro.2018.08.025 DOI: https://doi.org/10.1016/j.jclepro.2018.08.025
Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89, 913–933. https://doi.org/10.1016/j.fuel.2009.10.022 DOI: https://doi.org/10.1016/j.fuel.2009.10.022
Villca, A.R., Soriano, L., Font, A., Tashima, M. M., Monzó, J, Borrachero, M. V., Payá, J. (2021). Lime/pozzolan/geopolymer systems: Performance in pastes and mortars. Cons. Build. Mat. 276 122208. https://doi.org/10.1016/j.conbuildmat.2020.122208 DOI: https://doi.org/10.1016/j.conbuildmat.2020.122208
Vinai, R., Ntimugura, F., Cutbill, W., Evans, R. (2021). Production of sodium silicate from bamboo leaf ash for alkali activation of binders. Open Research Exeter. https://ore.exeter.ac.uk/repository/bitstream/handle/10871/125925/Vinai%20et%20al.pdf?sequence=1&isAllowed=y
Weil, M., Dombroswski, K., Buchwald, A. (2009). Life-Cycle analysis of geopolymers. In: Provis and van Deventer (ed), Geopolymers Structures, Processing, Properties and Industrial Applications. https://doi.org/10.1533/9781845696382.2.194 DOI: https://doi.org/10.1533/9781845696382.2.194
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.