Alternative activators in alkali activated cements

  • Jordi Payá Bernabeu Catedrático de UniversidadInstituto de Ciencia y Tecnología del HormigónUniversitat Politècnica de València
  • José Monzó Universitat Politécnica de València
  • María Victoria Borrachero Universitat Politécnica de València
  • Lourdes Soriano Universitat Politécnica de València
  • Mauro M. Tashima Universidade Estadual Paulista
Keywords: alkali activation, alternative activators, biomass ash, industrial waste, carbon footprint

Abstract

Alkali activated cements (AAC) require an alkaline component for activating of the precursor. The manufacture of the alkaline activator (AA) involves a very important energy and raw material consumption, so that the carbon footprint (CF) of AAC is basically influenced by this factor. An alternative is the use of other materials for AA preparation. In this work an exhaustive analysis of the different alternatives is carried out: silica-based materials to prepare of alternative silicates and alkaline-based materials. CF is compared relative to commercial Portland cements, and the effect of replacing commercial reagents with alternative activators is analyzed.

Downloads

Download data is not yet available.

References

Alonso, M. M., Gascó, C., Morales, M. M., Suárez-Navarro, J. A., Zamorano, M., Puertas, F. (2019). Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, durability, radiology and leaching behaviour. Cem. Concr. Compos. 104, 103384. https://doi.org/10.1016/j.cemconcomp.2019.103384

Ban, C. C., Nordin, N. S. A., Ken, P. W., Ramli, M., Hoe, K. W. (2014). The high volume reuse of hybrid biomass ash as a primary binder in cementless mortar block. Am. J. Appl. Sci. 11, 1369–1378. https://doi.org/10.3844/ajassp.2014.1369.1378

Bejarano, J., Garazón, C., Mejía de Gutiérrez, R., Delvasto, S., Gordillo, M. (2010). In: II Simposio Aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción, Valencia, Spain, November 8-9, 2010

Bernal, S. A., Rodríguez, E. D., Mejia De Gutiérrez, R., Provis, J. L., Delvasto, S. (2012). Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor. 3, 99–108. https://doi.org/10.1007/s12649-011-9093-3

Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Mater. Lett. 115, 72-74. https://doi.org/10.1016/j.matlet.2013.10.001

Choo, H., Lim, S., Lee, W., Lee, C. (2016). Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Constr. Build. Mater. 125, 21–28. https://doi.org/10.1016/j.conbuildmat.2016.08.015

De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Constr. Build. Mater. 178, 327–338. https://doi.org/10.1016/j.conbuildmat.2018.05.157

Fernández-Jiménez, A., Cristelo, N., Miranda, T., Palomo, A. (2017). Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. J. Clean. Prod. 162, 1200–1209. https://doi.org/10.1016/j.jclepro.2017.06.151

Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Mater. Lett. 203, 46-49. https://doi.org/10.1016/j.matlet.2017.05.129

Font, A., Soriano, L., Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Payá, J. (2018). Use of residual diatomaceous earth as a silica source in geopolymer production. Mater. Lett. 223, 10–13. https://doi.org/10.1016/j.matlet.2018.04.010

Font, A., Soriano, L., de Moraes Pinheiro, S. M., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2020). Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. J. Clean. Prod. 243, 118568. https://doi.org/10.1016/j.jclepro.2019.118568

EN 197-5, 2021. Cement - Part 5: Portland-composite cement CEM II/C-M and Composite cement CEM VI.

Gao, X., Yu, Q. L., Lazaro, A., Brouwers, H. J. H. (2017). Investigation on a green olivine nano-silica source based activator in alkali activated slag-fly ash blends: Reaction kinetics, gel structure and carbon footprint. Cem. Concr. Res. 100, 129–139. https://doi.org/10.1016/j.cemconres.2017.06.007

Hall, C. (1976). On the history of portland cement after 150 years. Journal of Chemical Education, 53(4), 222.

Jamieson, E., van Riessen, A., McLellan, B., Penna, B., Kealley, C., Nikraz, H. (2017). Introducing Bayer liquor-derived geopolymers. In: Handbook of low carbon concrete. Nazari, A. and Sanjayan, J.G. (eds), Kidlington, Oxford, United States: Elsevier.159-193. https://doi.org/10.1016/B978-0-12-804524-4.00008-7

Keijer, T., Bakker, V., Slootweg, J. C. (2019). Circular chemistry to enable a circular economy. Nature Chem 11, 190–195. https://doi.org/10.1038/s41557-019-0226-9

Liu, Y., Shi, C., Zhang, Z., Li, N. (2019). An overview on the reuse of waste glasses in alkali-activated materials. Resour. Conserv. Recycl. 144, 297–309. https://doi.org/10.1016/j.resconrec.2019.02.007

Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., Illikainen, M. (2018). One-part alkali-activated materials: A review. Cem. Concr. Res. https://doi.org/10.1016/j.cemconres.2017.10.001

Mejía, J. M., Mejía De Gutiérrez, R., Montes, C. (2016). Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 118, 133–139. https://doi.org/10.1016/j.jclepro.2016.01.057

Mohan, S. V., Katakojwala, R. (2021). The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0, Current Opinion in Green and Sustainable Chemistry,

, 100434. https://doi.org/10.1016/j.cogsc.2020.100434

Moraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Constr. Build. Mater. 171, 611–621. https://doi.org/10.1016/j.conbuildmat.2018.03.230

Pavía, S., Caro, S. (2008). An investigation of Roman mortar technology through the petrographic analysis of archaeological material. Cons. Build. Mat. 22, 1807-1811. https://doi.org/10.1016/j.conbuildmat.2007.05.003

Payá, J., Monzó, J., Roselló, J., Borrachero, M. V., Font, A., Soriano, L. (2020). Sustainable soil-compacted blocks containing blast furnace slag (BFS) activated with olive stone biomass ash (OBA). Sustain. 12, 1–15. https://doi.org/10.3390/su12239824

Peys, A., Rahier, H., Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Appl. Clay Sci. 119, 401–409. https://doi.org/10.1016/j.clay.2015.11.003

Phair, J. W. (2006). Green chemistry for sustainable cement production and use. Green chemistry, 8(9), 763-780.

Rajan, H. S., Kathirvel, P. (2021). Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste. J. Clean. Prod. 286, 124959. https://doi.org/10.1016/j.jclepro.2020.124959

Roselló, J., Soriano, L., Santamarina, M. P., Akasaki, J. L., José Luiz P. Melges, J. L. P., Payá, J. (2015). Microscopy characterization of silica-rich agrowastes to be used in cement binders: bamboo and sugarcane leaves. Microsc. Microanal. 21, 1314–1326. https://doi.org/10.1017/S1431927615015019

Rouseková, I., Bajza, A., Živica, V. (1997). Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. Cem. Concr. Res. 27, 1825-1828. https://doi.org/10.1016/S0008-8846(97)00191-9

Soriano, L., Font, A., Tashima, M. M., Monzó, J., Borrachero, M. V., Payá, J. (2020). One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Mater. Lett. 272, 127882. https://doi.org/10.1016/j.matlet.2020.127882

Tchakouté, H. K., Rüscher, C. H., Hinsch, M., Djobo, J. N. Y., Kamseu, E., Leonelli, C. (2017). Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chemie der Erde 77, 257–266. https://doi.org/10.1016/j.chemer.2017.04.003

Tong, K. T., Vinai, R., Soutsos, M. N. (2018). Use of Vietnamese rice husk ash for the production of sodium silicate as the activator for alkali-activated binders. J. Clean. Prod. 201, 272–286. https://doi.org/10.1016/j.jclepro.2018.08.025

Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89, 913–933. https://doi.org/10.1016/j.fuel.2009.10.022

Villca, A.R., Soriano, L., Font, A., Tashima, M. M., Monzó, J, Borrachero, M. V., Payá, J. (2021). Lime/pozzolan/geopolymer systems: Performance in pastes and mortars. Cons. Build. Mat. 276 122208. https://doi.org/10.1016/j.conbuildmat.2020.122208

Vinai, R., Ntimugura, F., Cutbill, W., Evans, R. (2021). Production of sodium silicate from bamboo leaf ash for alkali activation of binders. Open Research Exeter. https://ore.exeter.ac.uk/repository/bitstream/handle/10871/125925/Vinai%20et%20al.pdf?sequence=1&isAllowed=y

Weil, M., Dombroswski, K., Buchwald, A. (2009). Life-Cycle analysis of geopolymers. In: Provis and van Deventer (ed), Geopolymers Structures, Processing, Properties and Industrial Applications. https://doi.org/10.1533/9781845696382.2.194

Published
2022-01-01
How to Cite
Payá Bernabeu, J., Monzó, J., Borrachero, M. V., Soriano, L., & Tashima, M. M. (2022). Alternative activators in alkali activated cements. Revista ALCONPAT, 12(1), 16 - 31. https://doi.org/10.21041/ra.v12i1.568