Fatigue life of concrete: Experimental study on the influence of loading conditions and material strength
Abstract
This work presents an experimental investigation aiming to evaluate the influence on the concrete fatigue behavior regarding the loading frequency, load intensity and the material’s compressive strength. Tests were carried out considering three loading frequencies (0.125, 0.25 and 0.5 Hz), two levels of maximum stress (50% and 70% of the compressive strength) and concretes made with three different compressive strength (30, 50 and 70 MPa). The results point out that as the loading frequency is increased, the fatigue life increases exponentially. However, it was observed that the fatigue life is shorter in high-strength concretes, i.e., the fatigue life presented an inverse relationship with the compressive strength.
Downloads
References
Associação Brasileira de Normas Técnicas (2001). NBR NM 23: Agregados – Determinação da composição granulométrica. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2003). NBR NM 248: Agregados – Determinação da composição granulométrica. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2006). NBR NM 45: Agregados – Determinação da massa unitária e do volume de vazios. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2007). NBR 5739: Concreto – Ensaios de compressão de corpos-de-prova cilÃndricos. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2009). NBR 7211: Agregados para concreto – Especificações. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2008). NBR 8522: Concreto – Determinação do módulo estático de elasticidade à compressão. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2009). NBR NM 53: Agregado graúdo – Determinação da massa especÃfica, massa especÃfica aparente e absorção de água. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2015). NBR 16372: Cimento Portland e outros materiais em pó ― Determinação da finura pelo método de permeabilidade ao ar (método de Blaine). Rio de Janeiro.
Al-Gadhib, A. H., Baluch, M., Shaalan, A., Khan, A. (2000), Damage model for monotonic and fatigue response of high strength concrete. International Journal of Damage Mechanics, v. 9, n. 1, p. 57-78. https://doi.org/10.1177/105678950000900105 DOI: https://doi.org/10.1106/HRAR-ENQW-1LW2-533R
Arora, S., Singh, S. P. (2016), Analysis of flexural fatigue failure of concrete made with 100% Coarse Recycled Concrete Aggregates. Construction and Building Materials, v. 102, n. 1, p. 782-791. https://doi.org/10.1016/j.conbuildmat.2015.10.098 DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.098
ASTM International (2015), ASTM E1876: Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration.
Baroni, H. J. M. (2010), “Simulação da vida útil de fadiga do concreto em vigas de tabuleiro de pontes em função do fluxo de veÃculos pesadosâ€. Tese (Doutorado). Programa de Pós-Graduação em Engenharia Civil. Universidade Federal do Rio Grande do Sul. Porto Alegre.
Chen, X., BU, J., Fan, X., Lu, J., Xu, L. (2017), Effect of loading frequency and stress level on low cycle fatigue behavior of plain concrete in direct tension. Construction and Building Materials, v. 133, p. 367-375. https://doi.org/10.1016/j.conbuildmat.2016.12.085 DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.085
Clemmer, H. F. (1922), Fatigue of concrete. Proceedings, American Society for Testing and Materials. v. 22, n. 2, p. 408-419.
Cornellissen, H. A. W. (1984), Fatigue failure of concrete in tension. Heron, v. 29, n. 4, p. 2-67.
Cornelissen, H. A. W., Leewis, M. (1986) “Fatigue experiments for the design of plain concrete pavements†in: Workshop on Theoretical Design of Concrete Pavements, CROW-PIARC-CEMBUREAU, Report 1, Holanda.
Dowling, N. E. (2012), “Mechanical behavior of materials: Engineering methods for deformation, fracture, and fatigueâ€. Practice Hall, 4th edition, United States.
Graeff, E.; Prudêncio Jr., L. R. (2016). Determinação do módulo de elasticidade dos concretos da central de Itajaà da Maxmohr. [S.l.]: Relatório técnico.
Jansen A. (1996), “Research to fatigue behaviour of topping on prefabricated concrete girdersâ€. Thesis (Master). Delft University of Technology. Holanda.
Jiang, C., Xianglin, G., Huang, Q., Zhang, W. (2017), Deformation of concrete under high-cycle fatigue loads in uniaxial and eccentric compression. Construction and Building Materials, v. 141, p. 379-392. https://doi.org/10.1016/j.conbuildmat.2017.03.023 DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.023
Junges, P. (2017), “Análise de fadiga em pontes curtas de concreto armado a partir de dados de sistemas B-WIMâ€. Tese (Doutorado). Centro Tecnológico: Programa de Pós-Graduação em Engenharia Civil. Universidade Federal de Santa Catarina. Florianópolis.
Kasu, S. R., Deb, S., Mitra, N., Muppireddy, A. R., Kusam, S. R. (2019), Influence of aggregate size on flexural fatigue response of concrete. Construction and Building Materials, v. 229, p. 1-9. https://doi.org/10.1016/j.conbuildmat.2019.116922 DOI: https://doi.org/10.1016/j.conbuildmat.2019.116922
Kessler-Kramer, C., Mechtcherine, V., Mueller, H. S. (2003), “Failure of normal and high strength concrete under monotonic and cyclic tensile loading†in: Brittle Matrix Composites 7. Woodhead Publishing. p. 277-286. https://doi.org/10.1533/9780857093103.277 DOI: https://doi.org/10.1533/9780857093103.277
Kim, J. K., Kim, Y. Y. (1996), Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research, v. 26, n. 10, p. 1513-1523. DOI: https://doi.org/10.1016/0008-8846(96)00151-2
Kim, J., Yi, C., Lee, S. J., Zi, G. (2013), Flexural fatigue behaviour of concrete under uniaxial and biaxial stress. Magazine of Concrete Research, v. 65, n. 12, p. 757-764. https://doi.org/10.1016/0008-8846(96)00151-2 DOI: https://doi.org/10.1680/macr.12.00215
Lantsoght, E. O. L., Van Der Veen, C., Boer, A. (2016), Proposal for the fatigue strength of concrete under cycles of compression. Construction and Building Materials, v. 107, p. 138-156. https://doi.org/10.1016/j.conbuildmat.2016.01.007 DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.007
Lee, M. K., Barr, B. I. G. (2004), An overview of the fatigue behavior of plain and fiber reinforced concrete. Cement and Concrete Composites. v. 26, p. 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7 DOI: https://doi.org/10.1016/S0958-9465(02)00139-7
Lü, P., Li, Q., Song, Y. (2004), Damage constitutive of concrete under uniaxial alternate tension–compression fatigue loading based on double bounding surfaces. International Journal of Solids and Structures, v. 41, p. 3151-3166. https://doi.org/10.1016/j.ijsolstr.2004.01.026 DOI: https://doi.org/10.1016/j.ijsolstr.2004.01.026
Mascarenhas, F. Jr. R., Carvalho, R. C. (2019), Vida útil à fadiga da armadura longitudinal de vigas de pontes de concreto armado frente ao tráfego real de veÃculos pesados. Revista AlCONPAT, v. 9, n. 3, p. 303-319. https://doi.org/10.21041/ra.v9i3.375 DOI: https://doi.org/10.21041/ra.v9i3.375
Medeiros, A. (2012), “Estudo do comportamento à fadiga em compressão do concreto com fibrasâ€. Tese (Doutorado). Departamento de Engenharia Civil: Programa de Pós-graduação em Engenharia Civil. PontifÃcia Universidade Católica do Rio de Janeiro. Rio de Janeiro.
Ortega, J. J., Ruiz, G., Yu, R. C., Afanador-GarcÃa, N., Tarifa, M., Poveda, E., Zhang, X., Evangelista JR., F. (2018), Number of tests and corresponding error in concrete fatigue. International journal of fatigue, v. 116, p. 210-219. https://doi.org/10.1016/j.ijfatigue.2018.06.022 DOI: https://doi.org/10.1016/j.ijfatigue.2018.06.022
Popovics, J. S. (2008) “A study of static and dynamic modulus of elasticity of concreteâ€. University of Illinois, Urbana, IL. ACI-CRC Final Reports.
Raithby, K. D., Galloway, J. W. (1974), “Effects of moisture condition, age, and rate of loading on fatigue of plain concrete†in: ABELES Symposium: Fatigue of Concrete. ACI Publication, v. 41, p. 15-34.
Rodrigues, P. P. F. (1984), “Parâmetros de dosagem do cocreto.†São Paulo: ABCP, 1984.
Saini, B. S., Singh, S. P. (2020), Flexural fatigue life analysis of self-compacting concrete containing 100% coarse recycled concrete aggregates. Construction and Building Materials, v. 253, p. 1-13. https://doi.org/10.1016/j.conbuildmat.2020.119176 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119176
Sparks, P. R. (1982), Influence of rate of loading and material variability on the fatigue characteristics of concrete. ACI Journal, v. 75, n. 16, p. 331-342.
Subramaniam, K. V., Shah, S. P. (2003), Biaxial tension fatigue response of concrete. Cement and Concrete Composites, v. 25, n. 6, p. 617-623. https://doi.org/10.1016/S0958-9465(02)00075-6 DOI: https://doi.org/10.1016/S0958-9465(02)00075-6
Tepfers, R., Kutti, T. (1979), Fatigue strength of plain, ordinary and lightweight concrete. ACI Journal, v. 76, n. 29, p. 635-652. DOI: https://doi.org/10.14359/6962
Vasconcellos, A. T. D. (2018). “Estudo da variabilidade do módulo de elasticidade de concretos produzidos com diferentes tipos de agregados graúdosâ€. Dissertação (Mestrado). Departamento de Engenharia Civil: Programa de Pós-graduação em Engenharia Civil. Universidade Federal de Santa Catarina. Santa Catarina.
Xiao, J., Li, H., Yang, Z. (2013), Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings. Construction and Building Materials, v. 38, p. 681-688. https://doi.org/10.1016/j.conbuildmat.2012.09.024 DOI: https://doi.org/10.1016/j.conbuildmat.2012.09.024
Zhang, B., Phillips, D. V., Wu, K. (1996), Effect of loading frequency and stress reversal of fatigue life of plain concrete. Magazine of Concrete Research, v. 48, n. 177, p. 361-375. https://doi.org/10.1680/macr.1996.48.177.361 DOI: https://doi.org/10.1680/macr.1996.48.177.361
Zhang, B., Phillips, D. V., Wu, K. (1997), Further research on fatigue properties of plain concrete. Magazine of Concrete Research, v. 49, n. 78, p. 241-252. https://doi.org/10.1680/macr.1997.49.180.241 DOI: https://doi.org/10.1680/macr.1997.49.180.241
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.