Analysis of the self-regeneration of cementitious matrices through different methods of insertion of chemical and bacterial solutions

  • Fernanda Pacheco Itt Performance, Polytechnical school, UNISINOS, São Leopoldo, Brasil
  • Amanda Loeff Civil Engineering Undergraduation, Polytechnical school, UNISINOS, São Leopoldo, Brasil https://orcid.org/0000-0002-6242-009X
  • Vinicius Muller Civil Engineering Graduation, Polytechnical school, UNISINOS, São Leopoldo, Brasil
  • Hinoel Zamis Ehrenbring Itt Performance, Polytechnical school, UNISINOS, São Leopoldo, Brasil https://orcid.org/0000-0002-0339-9825
  • Roberto Christ Department of Civil and Environmental, Universidad de la Costa, Barranquilla Colombia
  • Regina Modolo Civil Engineering Graduation, Polytechnical school, UNISINOS, São Leopoldo, Brasil
  • Maria Fernanda de Oliveira Architecture Graduation, Polytechnical school, UNISINOS, São Leopoldo, Brasil https://orcid.org/0000-0001-5369-688X
  • Bernardo Tutikian Itt Performance, Polytechnical school, UNISINOS, São Leopoldo, Brasil
Keywords: bioconcrete, self-healing, self-reparing, crack, bacteria

Abstract

This study analyzed the healing potential of concrete when using bacterial solutions and chemical solutions, evaluating different materials that can be used for its encapsulation. To encapsulate the agents, expanded clay and expanded perlite were used. To analyze the effectiveness of healing, visual analysis techniques were performed using a high-precision optical microscope and 3D microtomography. The results pointed to a better performance of the BAC.AE (bacterial solution in expanded clay) trait, using bacterial solution encapsulated in expanded clay, which was able to heal cracks of up to 0.57mm, with the traits BAC.PE (bacterial solution in expanded perlite), bacterial solution encapsulated in expanded perlite, and SS (sodium silicate), chemical solution added at the time of molding in replacement of water, healed cracks of 0.16 mm and 0.29 mm respectively.

Downloads

Download data is not yet available.

References

Associação Brasileira de Normas Técnicas (2005), NBR 13279: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2015), NBR 5738: Concreto - Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2018), NBR 5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2014), NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2003), NBR NM 248: Agregados - Determinação da composição granulométrica. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2006), NBR NM 45: Agregados - Determinação da massa unitária e do volume de vazios. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2005), NBR NM 52: Agregado miúdo - Determinação de massa específica e massa específica aparente. Rio de Janeiro.

Achal, V., Mukherjee, A., Reddy, M. S. (2011), Effect of calcifying bacteria on permeation properties of concrete structures. Journal of Industrial Microbiology and Biotechnology. 38:1229-1234, http://dx.doi.org/10.1007/s10295-010-0901-8 DOI: https://doi.org/10.1007/s10295-010-0901-8

Al-Tabbaa, A., Litina, C., Giannaros, P., Kanellopoulos, A., Souza, L. (2019), First UK field application and performance of microcapsule-based self-healing concrete. Construction and Building Materials. 208:669-685, https://doi.org/10.1016/j.conbuildmat.2019.02.178 DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.178

Alghamri, R., Kanellopoulos, A., Al-Tabbaa, A (2016), Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Construction and Building Materials. 124:910-921, https://doi.org/10.1016/j.conbuildmat.2016.07.143 DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.143

Carmona Filho, A., Carmona, T. (2013), “Fissuração nas estruturas de concretoâ€. Boletim Técnico ALCONPAT Internacional.

Cappellesso, V. G. (2018), “Avaliação da autocicatrização de fissuras em concretos com diferentes cimentosâ€, Dissertação de Mestrado em Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre.

Chemrouk, M. (2015), The deteriorations of reinforced concrete and the option of high performances reinforced concrete. Procedia Engineering. 125:713-724, https://doi.org/10.1016/j.proeng.2015.11.112 DOI: https://doi.org/10.1016/j.proeng.2015.11.112

Gupta, S., Pang, S. D., Kua, H. W (2017), Autonomous healing in concrete by bio-based healing agents – A review. Construction and Building Materials. 146:419-428, https://doi.org/10.1016/j.conbuildmat.2017.04.111 DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.111

JIANG, L. et al. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Construction and Building Materials, v. 232, p. 117222, 2020, https://doi.org/10.1016/j.conbuildmat.2019.117222 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117222

Jonkers, H. M. (2011), Bacteria-based self-healing concrete. Frankfurter Afrikanistische Blätter. 8:49-79.

Jonkers, H. M., Thijssen, A. (2010). “Bacteria Mediated Remediation of Concrete Strutures†in: K. van Breugel, G. Ye, Y. Yuan (Eds.), 2nd International Symposium on Service Life Design for Infrastructure, [S. l.], pp. 833-840.

Krishnapriya, S., Babu, D. L. V., Arulraj, G. P. (2015), Isolation and identification of 60 bacteria to improve the strength of concrete. Microbiological Research. 174:48-55, https://doi.org/10.1016/j.micres.2015.03.009 DOI: https://doi.org/10.1016/j.micres.2015.03.009

Li, V. C., Herbert, E. (2012), Robust Self-Healing Concrete for Sustainable Infrastructure. Journal of Advanced Concrete Technology. 10:207-218, https://doi.org/10.3151/jact.10.207 DOI: https://doi.org/10.3151/jact.10.207

LIU, C et al. (2021), Experimental and analytical study on the flexural rigidity of microbial self-healing concrete based on recycled coarse aggregate (RCA). Construction and Building Materials, Vol 85, https://doi.org/10.1016/j.conbuildmat.2021.122941 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122941

Lottermann, A. F. (2013), “Patologias em estruturas de concreto: estudo de casoâ€, Monografia, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, p. 66.

Maddalena, R., Taha, H., Gardner, D. (2021), Self-healing potential of supplementary cementitious materials in cement mortars: sorptivity and pore structure. Developments in the built environment, Vol 6, https://doi.org/10.1016/j.dibe.2021.100044 DOI: https://doi.org/10.1016/j.dibe.2021.100044

Mehta, P. K., Monteiro, P. J. (2014), “Concreto: microestrutura, propriedades e materiaisâ€. IBRACON, São Paulo, Brasil, p. 782.

Milla, J. et al. (2019), Measuring the crack-repair efficiency of steel fiber reinforced concrete beams with microencapsulated calcium nitrate. Construction and Building Materials, v. 201, p. 526–538, https://doi.org/10.1016/j.conbuildmat.2018.12.193 DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.193

Pacheco, F. (2020), “Análise da confiabilidade dos mecanismos de autorregeneração do concreto em ambientes agressivos de exposiçãoâ€, Tese de Doutorado em Engenharia Civil, Universidade do Vale do Rio dos Sinos, p. 348.

Patel, P. (2015), Helping Concrete Heal Itself. ACS Central Science. 1(9):470-472. DOI: https://doi.org/10.1021/acscentsci.5b00376

Pelletier, M. M., Brown, R., Sshukla, A., Bose, A. (2011), Selfhealing concrete with a microencapsulated healing agent. University of Rhode Island, Kingston, RI, USA.

Rais, M. S., Khan, R. A. (2021), Experimental investigation on the strength and durability properties of bacterial self-healing recycled aggregate concrete with mineral admixtures. Construction and Building Materials. Vol 306, Nov 2021, https://doi.org/10.1016/j.conbuildmat.2021.124901 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124901

Ramachandran, S. K., Ramakrishnan, V., Bang, S. S. (2001), Remediation of concrete using microorganisms, ACI Mater. J. 98(1). DOI: https://doi.org/10.14359/10154

Schwantes-Cezario, N., Nogueira, G. S. F., Toralles, B. M. (2017), Biocimentação de compósitos cimentícios mediante adição de esporos de B. subtilis AP91. Revista de Engenharia Civil IMED. 4(2):142-158, https://doi.org/10.18256/2358-6508.2017.v4i2.2072 DOI: https://doi.org/10.18256/2358-6508.2017.v4i2.2072

Seifan, M., Samani, A. K. and Berenjian, A. (2016), Bioconcrete: next generation of selfhealing concrete, Applied Microbiology and Biotechnology. 100:2591-2602, https://doi.org/10.1007/s00253-016-7316-z DOI: https://doi.org/10.1007/s00253-016-7316-z

Sisomphon, K., Copuroglu, O., Fraaij, A. (2011), Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a selfhealing agent in blast furnace slag mortar. Heron. 56(1-2):17-36.

Souradeep, G., Kua, H. W. (2016), Encapsulation Technology and Techniques in Self-Healing Concrete. Journal of Materials in Civil Engineering. 25:864-870, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001687 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001687

Stanaszek-Tomal, E. (2020), Bacterial Concrete as a Sustainable Building Material? 2020. Sustainability, 12, 696; http://doi:10.3390/su12020696 DOI: https://doi.org/10.3390/su12020696

Tittelboom, K. V., De Belie, N. (2013), Self-Healing in Cementitious Materials - A Review. Materials. 6:2182-2217. https://doi.org/10.3390/ma6062182 DOI: https://doi.org/10.3390/ma6062182

Van Breugel, K. (2007). “Is there a market for self-healing cement-based materials?†in: First International Conference on Self Healing Materials, Noordwijk aan Zee (Netherlands), pp. 1-9.

Xu et al. (2020), Application of ureolysis-based microbial CaCO3 precipitation in self-healing of concrete and inhibition of reinforcement corrosion. Construction and Building Materials, Vol 265, https://doi.org/10.1016/j.conbuildmat.2020.120364 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120364

Wan, P, et al. (2021), Self-healing properties of asphalt concrete containing responsive calcium alginate/nano-Fe3O4 composite capsules via microwave irradiation. Construction and Building Materials, Vol 310, https://doi.org/10.1016/j.conbuildmat.2021.125258 DOI: https://doi.org/10.1016/j.conbuildmat.2021.125258

Wang, J., Dewanckele, J., Cnudde, V., Vlierbergue, S. V., Verstraete, W., De Belie, N. (2014), X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement and Concrete Composites. 53:289-304, https://doi.org/10.1016/j.cemconcomp.2014.07.014 DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.014

Wang, J. et al. (2017), Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Applied Microbiology and Biotechnology, v. 101, n. 12, p. 5101–5114, https://doi.org/10.1007/s00253-017-8260-2 DOI: https://doi.org/10.1007/s00253-017-8260-2

Yang, J., Jiang, G. (2003), Experimental study on properties of pervious concrete pavement materials, Cement and Concrete Research. 33:381-386, https://doi.org/10.1016/S0008-8846(02)00966-3 DOI: https://doi.org/10.1016/S0008-8846(02)00966-3

Zhang, X et al. (2021), Effects of carrier on the performance of bacteria-based self-healing concrete. Construction and Building Materials, Vol 305, https://doi.org/10.1016/j.conbuildmat.2021.124771 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124771

Published
2022-01-01
How to Cite
Pacheco, F., Loeff, A., Muller, V., Zamis Ehrenbring, H., Christ, R., Modolo, R., de Oliveira, M. F., & Tutikian, B. (2022). Analysis of the self-regeneration of cementitious matrices through different methods of insertion of chemical and bacterial solutions. Revista ALCONPAT, 12(1), 32 - 46. https://doi.org/10.21041/ra.v12i1.559