Analysis of the self-regeneration of cementitious matrices through different methods of insertion of chemical and bacterial solutions
Abstract
This study analyzed the healing potential of concrete when using bacterial solutions and chemical solutions, evaluating different materials that can be used for its encapsulation. To encapsulate the agents, expanded clay and expanded perlite were used. To analyze the effectiveness of healing, visual analysis techniques were performed using a high-precision optical microscope and 3D microtomography. The results pointed to a better performance of the BAC.AE (bacterial solution in expanded clay) trait, using bacterial solution encapsulated in expanded clay, which was able to heal cracks of up to 0.57mm, with the traits BAC.PE (bacterial solution in expanded perlite), bacterial solution encapsulated in expanded perlite, and SS (sodium silicate), chemical solution added at the time of molding in replacement of water, healed cracks of 0.16 mm and 0.29 mm respectively.
Downloads
References
Associação Brasileira de Normas Técnicas (2005), NBR 13279: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2015), NBR 5738: Concreto - Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2018), NBR 5739: Concreto - Ensaio de compressão de corpos de prova cilÃndricos. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2014), NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2003), NBR NM 248: Agregados - Determinação da composição granulométrica. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2006), NBR NM 45: Agregados - Determinação da massa unitária e do volume de vazios. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2005), NBR NM 52: Agregado miúdo - Determinação de massa especÃfica e massa especÃfica aparente. Rio de Janeiro.
Achal, V., Mukherjee, A., Reddy, M. S. (2011), Effect of calcifying bacteria on permeation properties of concrete structures. Journal of Industrial Microbiology and Biotechnology. 38:1229-1234, http://dx.doi.org/10.1007/s10295-010-0901-8 DOI: https://doi.org/10.1007/s10295-010-0901-8
Al-Tabbaa, A., Litina, C., Giannaros, P., Kanellopoulos, A., Souza, L. (2019), First UK field application and performance of microcapsule-based self-healing concrete. Construction and Building Materials. 208:669-685, https://doi.org/10.1016/j.conbuildmat.2019.02.178 DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.178
Alghamri, R., Kanellopoulos, A., Al-Tabbaa, A (2016), Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Construction and Building Materials. 124:910-921, https://doi.org/10.1016/j.conbuildmat.2016.07.143 DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.143
Carmona Filho, A., Carmona, T. (2013), “Fissuração nas estruturas de concretoâ€. Boletim Técnico ALCONPAT Internacional.
Cappellesso, V. G. (2018), “Avaliação da autocicatrização de fissuras em concretos com diferentes cimentosâ€, Dissertação de Mestrado em Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre.
Chemrouk, M. (2015), The deteriorations of reinforced concrete and the option of high performances reinforced concrete. Procedia Engineering. 125:713-724, https://doi.org/10.1016/j.proeng.2015.11.112 DOI: https://doi.org/10.1016/j.proeng.2015.11.112
Gupta, S., Pang, S. D., Kua, H. W (2017), Autonomous healing in concrete by bio-based healing agents – A review. Construction and Building Materials. 146:419-428, https://doi.org/10.1016/j.conbuildmat.2017.04.111 DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.111
JIANG, L. et al. Sugar-coated expanded perlite as a bacterial carrier for crack-healing concrete applications. Construction and Building Materials, v. 232, p. 117222, 2020, https://doi.org/10.1016/j.conbuildmat.2019.117222 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117222
Jonkers, H. M. (2011), Bacteria-based self-healing concrete. Frankfurter Afrikanistische Blätter. 8:49-79.
Jonkers, H. M., Thijssen, A. (2010). “Bacteria Mediated Remediation of Concrete Strutures†in: K. van Breugel, G. Ye, Y. Yuan (Eds.), 2nd International Symposium on Service Life Design for Infrastructure, [S. l.], pp. 833-840.
Krishnapriya, S., Babu, D. L. V., Arulraj, G. P. (2015), Isolation and identification of 60 bacteria to improve the strength of concrete. Microbiological Research. 174:48-55, https://doi.org/10.1016/j.micres.2015.03.009 DOI: https://doi.org/10.1016/j.micres.2015.03.009
Li, V. C., Herbert, E. (2012), Robust Self-Healing Concrete for Sustainable Infrastructure. Journal of Advanced Concrete Technology. 10:207-218, https://doi.org/10.3151/jact.10.207 DOI: https://doi.org/10.3151/jact.10.207
LIU, C et al. (2021), Experimental and analytical study on the flexural rigidity of microbial self-healing concrete based on recycled coarse aggregate (RCA). Construction and Building Materials, Vol 85, https://doi.org/10.1016/j.conbuildmat.2021.122941 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122941
Lottermann, A. F. (2013), “Patologias em estruturas de concreto: estudo de casoâ€, Monografia, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, p. 66.
Maddalena, R., Taha, H., Gardner, D. (2021), Self-healing potential of supplementary cementitious materials in cement mortars: sorptivity and pore structure. Developments in the built environment, Vol 6, https://doi.org/10.1016/j.dibe.2021.100044 DOI: https://doi.org/10.1016/j.dibe.2021.100044
Mehta, P. K., Monteiro, P. J. (2014), “Concreto: microestrutura, propriedades e materiaisâ€. IBRACON, São Paulo, Brasil, p. 782.
Milla, J. et al. (2019), Measuring the crack-repair efficiency of steel fiber reinforced concrete beams with microencapsulated calcium nitrate. Construction and Building Materials, v. 201, p. 526–538, https://doi.org/10.1016/j.conbuildmat.2018.12.193 DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.193
Pacheco, F. (2020), “Análise da confiabilidade dos mecanismos de autorregeneração do concreto em ambientes agressivos de exposiçãoâ€, Tese de Doutorado em Engenharia Civil, Universidade do Vale do Rio dos Sinos, p. 348.
Patel, P. (2015), Helping Concrete Heal Itself. ACS Central Science. 1(9):470-472. DOI: https://doi.org/10.1021/acscentsci.5b00376
Pelletier, M. M., Brown, R., Sshukla, A., Bose, A. (2011), Selfhealing concrete with a microencapsulated healing agent. University of Rhode Island, Kingston, RI, USA.
Rais, M. S., Khan, R. A. (2021), Experimental investigation on the strength and durability properties of bacterial self-healing recycled aggregate concrete with mineral admixtures. Construction and Building Materials. Vol 306, Nov 2021, https://doi.org/10.1016/j.conbuildmat.2021.124901 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124901
Ramachandran, S. K., Ramakrishnan, V., Bang, S. S. (2001), Remediation of concrete using microorganisms, ACI Mater. J. 98(1). DOI: https://doi.org/10.14359/10154
Schwantes-Cezario, N., Nogueira, G. S. F., Toralles, B. M. (2017), Biocimentação de compósitos cimentÃcios mediante adição de esporos de B. subtilis AP91. Revista de Engenharia Civil IMED. 4(2):142-158, https://doi.org/10.18256/2358-6508.2017.v4i2.2072 DOI: https://doi.org/10.18256/2358-6508.2017.v4i2.2072
Seifan, M., Samani, A. K. and Berenjian, A. (2016), Bioconcrete: next generation of selfhealing concrete, Applied Microbiology and Biotechnology. 100:2591-2602, https://doi.org/10.1007/s00253-016-7316-z DOI: https://doi.org/10.1007/s00253-016-7316-z
Sisomphon, K., Copuroglu, O., Fraaij, A. (2011), Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a selfhealing agent in blast furnace slag mortar. Heron. 56(1-2):17-36.
Souradeep, G., Kua, H. W. (2016), Encapsulation Technology and Techniques in Self-Healing Concrete. Journal of Materials in Civil Engineering. 25:864-870, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001687 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001687
Stanaszek-Tomal, E. (2020), Bacterial Concrete as a Sustainable Building Material? 2020. Sustainability, 12, 696; http://doi:10.3390/su12020696 DOI: https://doi.org/10.3390/su12020696
Tittelboom, K. V., De Belie, N. (2013), Self-Healing in Cementitious Materials - A Review. Materials. 6:2182-2217. https://doi.org/10.3390/ma6062182 DOI: https://doi.org/10.3390/ma6062182
Van Breugel, K. (2007). “Is there a market for self-healing cement-based materials?†in: First International Conference on Self Healing Materials, Noordwijk aan Zee (Netherlands), pp. 1-9.
Xu et al. (2020), Application of ureolysis-based microbial CaCO3 precipitation in self-healing of concrete and inhibition of reinforcement corrosion. Construction and Building Materials, Vol 265, https://doi.org/10.1016/j.conbuildmat.2020.120364 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120364
Wan, P, et al. (2021), Self-healing properties of asphalt concrete containing responsive calcium alginate/nano-Fe3O4 composite capsules via microwave irradiation. Construction and Building Materials, Vol 310, https://doi.org/10.1016/j.conbuildmat.2021.125258 DOI: https://doi.org/10.1016/j.conbuildmat.2021.125258
Wang, J., Dewanckele, J., Cnudde, V., Vlierbergue, S. V., Verstraete, W., De Belie, N. (2014), X-ray computed tomography proof of bacterial-based self-healing in concrete. Cement and Concrete Composites. 53:289-304, https://doi.org/10.1016/j.cemconcomp.2014.07.014 DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.014
Wang, J. et al. (2017), Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Applied Microbiology and Biotechnology, v. 101, n. 12, p. 5101–5114, https://doi.org/10.1007/s00253-017-8260-2 DOI: https://doi.org/10.1007/s00253-017-8260-2
Yang, J., Jiang, G. (2003), Experimental study on properties of pervious concrete pavement materials, Cement and Concrete Research. 33:381-386, https://doi.org/10.1016/S0008-8846(02)00966-3 DOI: https://doi.org/10.1016/S0008-8846(02)00966-3
Zhang, X et al. (2021), Effects of carrier on the performance of bacteria-based self-healing concrete. Construction and Building Materials, Vol 305, https://doi.org/10.1016/j.conbuildmat.2021.124771 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124771
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.