Service life prediction for concrete structures based on carbonation front depth models
Abstract
This paper seeks to evaluate the variability in predicting the service life of concrete structures through four models that estimate the natural advance of the carbonation front. The results show that there is variability in the estimated carbonation front. The models by Possan (2010) and Ekolu (2018) show estimated values close to measured ones, while Ho and Lewis (1987) and Bob and Affana (1993) tend to underestimate and overestimate the natural carbonation front, respectively. Only concretes without added supplementary cementitious materials were considered, due to model limitations. Compressive strength, CO2 concentration and relative humidity have significant influence on the results and the variability depends on which parameters are considered in the models.
Downloads
References
Associação Brasileira de Normas Técnicas. (2013). NBR 15575-1: Edificações habitacionais — Desempenho Parte 1: Requisitos gerais. Rio de Janeiro.
Associação Brasileira de Normas Técnicas. (2014). NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro.
Bob, C., Afana, E. (1993). “On-site assessment of concrete carbonationâ€. Proceedings of the International Conference Failure of Concrete Structures, RILEM, Bratislava: (Rep. Eslovaca), pp. 84–87.
Cadore, W.C. (2008), “Estudo da camada de cobrimento de protótipos de concreto com altos teores de adições minerais e cal hidratadaâ€, Dissertação de Mestrado, Universidade Federal de Santa Maria, p.149.
Chen, T., Gao, X. (2019), Effect of carbonation curing regime on strength and microstructure of Portland cement paste. Journal of CO2 Utilization, 34:74-86. https://doi.org/10.1016/j.jcou.2019.05.034 DOI: https://doi.org/10.1016/j.jcou.2019.05.034
Chen, Y., Liu, L., Yu, Z. (2018), Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials, 11, 2167. https://doi.org/10.3390/ma11112167 DOI: https://doi.org/10.3390/ma11112167
Dierfeld, S. G. et al. (2020), Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures, 53:136. https://doi.org/10.1617/s11527-020-01558-w DOI: https://doi.org/10.1617/s11527-020-01558-w
Elsalamawy, M., Mohamed, A. R., Kamal, E. M. (2019), The role of relative humidity and cement type on carbonation resistance of concrete. Alexandria Engineering Journal 58(4):1257–1264. https://doi.org/10.1016/j.aej.2019.10.008 DOI: https://doi.org/10.1016/j.aej.2019.10.008
Ekolu, S. O. (2018), Model for practical prediction of natural carbonation in reinforced concrete: Part 1-formulation. Cement and Concrete Composites. 86:40-56. https://doi.org/10.1016/j.cemconcomp.2017.10.006 DOI: https://doi.org/10.1016/j.cemconcomp.2017.10.006
Ferreira, M. B. (2013), “Estudo da carbonatação natural de concretos com diferentes adições minerais após 10 anos de exposiçãoâ€, Dissertação de Mestrado, Universidade Federal de Goiás, p. 197.
Félix, E. E., Carrazedo, R., Possan, E. (2017), Análise paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiais. Revista ALCONPAT, 7(3), pp. 302-316. https://doi.org/10.21041/ra.v7i3.245 DOI: https://doi.org/10.21041/ra.v7i3.245
Helene, P. (1997). “Vida útil das Estruturas de Concretoâ€. in: IV Congresso Iberoamericano de Patologia das Construções. Anais. Porto Alegre: RS (Brasil).
Ho, D. W. S., Lewis, R. K. (1987), Carbonation of concrete and its prediction. Cement and Concrete Research, 17(3):489-504. https://doi.org/10.1016/0008-8846(87)90012-3 DOI: https://doi.org/10.1016/0008-8846(87)90012-3
Housty, Y. F., Wittmann, F. H. (2012), Depth profiles of carbonates formed during natural carbonation. Cement and Concrete Research, 32(12):1923-1930. https://doi.org/10.1016/S0008-8846(02)00908-0 DOI: https://doi.org/10.1016/S0008-8846(02)00908-0
Köliö, A. et al. (2014), Durability demands related to carbonation induced corrosion for Finnish concrete buildings in changing climate. Engineering structures, 62-63:42-52. https://doi.org/10.1016/j.engstruct.2014.01.032 DOI: https://doi.org/10.1016/j.engstruct.2014.01.032
Kulakowski, M. P. (2002), “Contribuição ao estudo de carbonatação de concretos e argamassas compostos com adição de sÃlica ativaâ€, Tese de Doutorado, Universidade Federal do Rio Grande do Sul, Porto Alegre: RS (Brasil), p. 180.
Li, D. et al. (2018), Evaluating the effect of external and internal factors on carbonation of existing concrete building structures. Construction and Building Materials, 167:73-81 https://doi.org/10.1016/j.conbuildmat.2018.01.127 DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.127
Nardino, C. et al. (2019) “Previsão de vida útil de estruturas por modelos matemáticos e carbonatação natural†in: 4º Simpósio Paranaense de Patologia das Construções, Curitiba:PR (Brasil), pp. 300-311. https://doi.org/10.4322/2526-7248.052 DOI: https://doi.org/10.4322/2526-7248.052
Pauletti, C. (2009). “Estimativa da carbonatação natural de materiais cimentÃcios a partir de ensaios acelerados e de modelos de prediçãoâ€, Tese de Doutorado, Universidade Federal do Rio Grande do Sul, Porto Alegre:RS (Brasil), p. 285.
Peter, M. A. et al. (2008), Competition of several carbonation reactions in concrete: A parametric study. Cement and concrete research, 38(12):1385-1393. https://doi.org/10.1016/j.cemconres.2008.09.003 DOI: https://doi.org/10.1016/j.cemconres.2008.09.003
Pires, P. F. (2016). “Estudo da carbonatação avançada em concretos contendo adições mineraisâ€, Dissertação de Mestrado, Universidade Federal de Goiás. p. 141.
Possan, E. (2010), “Modelagem da carbonatação e previsão de vida útil de estruturas de concreto em ambiente urbanoâ€, Tese de Doutorado, Universidade Federal do Rio Grande do Sul. p. 263.
Possan, E. et al. (2017), CO2 uptake potential due to concrete carbonation: A case study. Case Studies in Construction Materials, 6:147-161. https://doi.org/10.1016/j.cscm.2017.01.007 DOI: https://doi.org/10.1016/j.cscm.2017.01.007
Ribeiro, D. V. et. al. (2018), “Corrosão e Degradação em Estruturas de Concreto: Teoria, Controle e Técnicas de Análise e Intervençãoâ€. Elsevier, Rio de Janeiro, Brasil, p. 426.
Ribeiro, A. B., Santos, T., Gonçalves, A. (2018), Performance of concrete exposed to natural carbonation: Use of the k-value concept. Construction and Building Materials. 175:360–370. https://doi.org/10.1016/j.conbuildmat.2018.04.206 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.206
Rozière, E., Loukili, A., Cussigh, F. (2009), A performance based approach for durability of concrete exposed to carbonation. Construction and Building Materials 23(1):190–199. https://doi.org/10.1016/j.conbuildmat.2008.01.006 DOI: https://doi.org/10.1016/j.conbuildmat.2008.01.006
Sanjuán, M., Andrade, C., Cheyrezy, M. (2003), Concrete carbonation tests in natural and accelerated conditions. Advances in Cement Research, 15(4):171–180. https://doi.org/10.1680/adcr.2003.15.4.171 DOI: https://doi.org/10.1680/adcr.2003.15.4.171
Song, H., Kwon, S. (2007), Permeability characteristics of carbonated concrete considering capillary pore structure. Cement and Concrete Research, 37(6):909-915. https://doi.org/10.1016/j.cemconres.2007.03.011 DOI: https://doi.org/10.1016/j.cemconres.2007.03.011
Tasca, M. (2012), “Estudo da carbonatação natural de concretos com pozolanas: monitoramento em longo prazo e análise da microestruturaâ€. Dissertação de Mestrado, Universidade Federal de Santa Maria, p. 178.
Tuutti, K. (1982), “Corrosion of Steel in Concreteâ€. Swedish Cement and Concrete Research Institute, Stockholm, Sweden, p.468.
Vieira, R. E. et al. (2016). “Aspectos sobre a extração e composição da água de poro de pasta de cimento hidratado com vista à durabilidade do concreto armadoâ€. in: 7 Congresso Brasileiro de Cimento - CBCI, São Paulo: SP (Brasil), pp. 15.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.