Service life prediction for concrete structures based on carbonation front depth models

  • Rayara Pinto Costa Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. https://orcid.org/0000-0003-3077-3314
  • Alessandro Simas Franchetto Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. https://orcid.org/0000-0003-3218-0803
  • Ana Júlia Smolinski Gouveia Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. https://orcid.org/0000-0003-4268-7827
  • Fabiana Ziegler Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. https://orcid.org/0000-0002-9588-7016
  • Kennedy Queiros Pessoa Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil. https://orcid.org/0000-0001-6328-2867
  • Mônica Regina Garcez Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.
Keywords: carbonatation, service life prediction, carbonatation depth, concrete durability

Abstract

This paper seeks to evaluate the variability in predicting the service life of concrete structures through four models that estimate the natural advance of the carbonation front. The results show that there is variability in the estimated carbonation front. The models by Possan (2010) and Ekolu (2018) show estimated values close to measured ones, while Ho and Lewis (1987) and Bob and Affana (1993) tend to underestimate and overestimate the natural carbonation front, respectively. Only concretes without added supplementary cementitious materials were considered, due to model limitations. Compressive strength, CO2 concentration and relative humidity have significant influence on the results and the variability depends on which parameters are considered in the models.

Downloads

Download data is not yet available.

Author Biographies

Alessandro Simas Franchetto, Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Master's student in the Risk Management area of the Postgraduate Program in Civil Engineering: Construction and Infrastructure (PPGCI) at the Federal University of Rio Grande do Sul (UFRGS). She studied Civil Engineering at UFRGS. Experiences with design studies of reinforced concrete structures. Interest in structures, fire safety and BIM.

Ana Júlia Smolinski Gouveia, Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Degree in Civil Engineering from the Federal University of Rio Grande do Sul (2019). She is currently a special master's student in Civil Engineering at the Federal University of Rio Grande do Sul (UFRGS), with a focus on Performance and Construction Pathology. She is interested in the areas of Fire Safety, Building Performance and Environmental Sustainability in Civil Construction.

Fabiana Ziegler, Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Civil Engineer from the Integrated Regional University of Alto Uruguai e das Missões (URI - Santo Ângelo). Master in Civil Engineering from the Postgraduate Program in Civil Engineering: Construction and Infrastructure (PPGCI), at the Federal University of Rio Grande do Sul (UFRGS), with work focused on the evaluation of crack self-healing in concrete with crystallizing additives. She is part of the research group that studies the Self-healing of cracks in cementitious materials (UFRGS / NORIE / LAMTAC), and has a PhD in progress at PPGCI / UFRGS.

Kennedy Queiros Pessoa, Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Master's student in Civil Engineering: Construction and Infrastructure, concentration area: Construction, from the Federal University of Rio Grande do Sul. Civil Engineer from the Federal University of Acre.

Mônica Regina Garcez, Núcleo orientado para a inovação da construção (NORIE), Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

Graduated in Civil Engineering at UFSM (1999), Master in Civil Engineering and Environmental Preservation at UFSM (2002) and Doctorate in Civil Engineering at UFRGS (2007), with a sandwich period at Swiss Federal Laboratories for Material Testing and Research (EMPA-Dubendorf ). She is currently Associate Professor at the Interdisciplinary Department at UFRGS and permanent professor at the Postgraduate Program in Civil Engineering: Construction and Infrastructure (PPGCI / UFRGS).

References

Associação Brasileira de Normas Técnicas. (2013). NBR 15575-1: Edificações habitacionais — Desempenho Parte 1: Requisitos gerais. Rio de Janeiro.

Associação Brasileira de Normas Técnicas. (2014). NBR 6118: Projeto de estruturas de concreto – Procedimento. Rio de Janeiro.

Bob, C., Afana, E. (1993). “On-site assessment of concrete carbonation”. Proceedings of the International Conference Failure of Concrete Structures, RILEM, Bratislava: (Rep. Eslovaca), pp. 84–87.

Cadore, W.C. (2008), “Estudo da camada de cobrimento de protótipos de concreto com altos teores de adições minerais e cal hidratada”, Dissertação de Mestrado, Universidade Federal de Santa Maria, p.149.

Chen, T., Gao, X. (2019), Effect of carbonation curing regime on strength and microstructure of Portland cement paste. Journal of CO2 Utilization, 34:74-86. https://doi.org/10.1016/j.jcou.2019.05.034

Chen, Y., Liu, L., Yu, Z. (2018), Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials, 11, 2167. https://doi.org/10.3390/ma11112167

Dierfeld, S. G. et al. (2020), Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures, 53:136. https://doi.org/10.1617/s11527-020-01558-w

Elsalamawy, M., Mohamed, A. R., Kamal, E. M. (2019), The role of relative humidity and cement type on carbonation resistance of concrete. Alexandria Engineering Journal 58(4):1257–1264. https://doi.org/10.1016/j.aej.2019.10.008

Ekolu, S. O. (2018), Model for practical prediction of natural carbonation in reinforced concrete: Part 1-formulation. Cement and Concrete Composites. 86:40-56. https://doi.org/10.1016/j.cemconcomp.2017.10.006

Ferreira, M. B. (2013), “Estudo da carbonatação natural de concretos com diferentes adições minerais após 10 anos de exposição”, Dissertação de Mestrado, Universidade Federal de Goiás, p. 197.

Félix, E. E., Carrazedo, R., Possan, E. (2017), Análise paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiais. Revista ALCONPAT, 7(3), pp. 302-316. https://doi.org/10.21041/ra.v7i3.245

Helene, P. (1997). “Vida útil das Estruturas de Concreto”. in: IV Congresso Iberoamericano de Patologia das Construções. Anais. Porto Alegre: RS (Brasil).

Ho, D. W. S., Lewis, R. K. (1987), Carbonation of concrete and its prediction. Cement and Concrete Research, 17(3):489-504. https://doi.org/10.1016/0008-8846(87)90012-3

Housty, Y. F., Wittmann, F. H. (2012), Depth profiles of carbonates formed during natural carbonation. Cement and Concrete Research, 32(12):1923-1930. https://doi.org/10.1016/S0008-8846(02)00908-0

Köliö, A. et al. (2014), Durability demands related to carbonation induced corrosion for Finnish concrete buildings in changing climate. Engineering structures, 62-63:42-52. https://doi.org/10.1016/j.engstruct.2014.01.032

Kulakowski, M. P. (2002), “Contribuição ao estudo de carbonatação de concretos e argamassas compostos com adição de sílica ativa”, Tese de Doutorado, Universidade Federal do Rio Grande do Sul, Porto Alegre: RS (Brasil), p. 180.

Li, D. et al. (2018), Evaluating the effect of external and internal factors on carbonation of existing concrete building structures. Construction and Building Materials, 167:73-81 https://doi.org/10.1016/j.conbuildmat.2018.01.127

Nardino, C. et al. (2019) “Previsão de vida útil de estruturas por modelos matemáticos e carbonatação natural” in: 4º Simpósio Paranaense de Patologia das Construções, Curitiba:PR (Brasil), pp. 300-311. https://doi.org/10.4322/2526-7248.052

Pauletti, C. (2009). “Estimativa da carbonatação natural de materiais cimentícios a partir de ensaios acelerados e de modelos de predição”, Tese de Doutorado, Universidade Federal do Rio Grande do Sul, Porto Alegre:RS (Brasil), p. 285.

Peter, M. A. et al. (2008), Competition of several carbonation reactions in concrete: A parametric study. Cement and concrete research, 38(12):1385-1393. https://doi.org/10.1016/j.cemconres.2008.09.003

Pires, P. F. (2016). “Estudo da carbonatação avançada em concretos contendo adições minerais”, Dissertação de Mestrado, Universidade Federal de Goiás. p. 141.

Possan, E. (2010), “Modelagem da carbonatação e previsão de vida útil de estruturas de concreto em ambiente urbano”, Tese de Doutorado, Universidade Federal do Rio Grande do Sul. p. 263.

Possan, E. et al. (2017), CO2 uptake potential due to concrete carbonation: A case study. Case Studies in Construction Materials, 6:147-161. https://doi.org/10.1016/j.cscm.2017.01.007

Ribeiro, D. V. et. al. (2018), “Corrosão e Degradação em Estruturas de Concreto: Teoria, Controle e Técnicas de Análise e Intervenção”. Elsevier, Rio de Janeiro, Brasil, p. 426.

Ribeiro, A. B., Santos, T., Gonçalves, A. (2018), Performance of concrete exposed to natural carbonation: Use of the k-value concept. Construction and Building Materials. 175:360–370. https://doi.org/10.1016/j.conbuildmat.2018.04.206

Rozière, E., Loukili, A., Cussigh, F. (2009), A performance based approach for durability of concrete exposed to carbonation. Construction and Building Materials 23(1):190–199. https://doi.org/10.1016/j.conbuildmat.2008.01.006

Sanjuán, M., Andrade, C., Cheyrezy, M. (2003), Concrete carbonation tests in natural and accelerated conditions. Advances in Cement Research, 15(4):171–180. https://doi.org/10.1680/adcr.2003.15.4.171

Song, H., Kwon, S. (2007), Permeability characteristics of carbonated concrete considering capillary pore structure. Cement and Concrete Research, 37(6):909-915. https://doi.org/10.1016/j.cemconres.2007.03.011

Tasca, M. (2012), “Estudo da carbonatação natural de concretos com pozolanas: monitoramento em longo prazo e análise da microestrutura”. Dissertação de Mestrado, Universidade Federal de Santa Maria, p. 178.

Tuutti, K. (1982), “Corrosion of Steel in Concrete”. Swedish Cement and Concrete Research Institute, Stockholm, Sweden, p.468.

Vieira, R. E. et al. (2016). “Aspectos sobre a extração e composição da água de poro de pasta de cimento hidratado com vista à durabilidade do concreto armado”. in: 7 Congresso Brasileiro de Cimento - CBCI, São Paulo: SP (Brasil), pp. 15.

Published
2022-01-01
How to Cite
Pinto Costa, R., Simas Franchetto, A., Smolinski Gouveia, A. J., Ziegler, F., Queiros Pessoa, K., & Garcez, M. R. (2022). Service life prediction for concrete structures based on carbonation front depth models. Revista ALCONPAT, 12(1), 47 -. https://doi.org/10.21041/ra.v12i1.558