30 years of rubberized concrete investigations (1990-2020). A bibliometric analysis

  • Zakaryaa Zarhri CONACYT-Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico https://orcid.org/0000-0001-8542-060X
  • William Rosado Martinez Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico https://orcid.org/0000-0002-4328-5929
  • Jose Antonio Dominguez Lepe Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico https://orcid.org/0000-0002-1332-8676
  • Ricardo Enrique Vega Azamar Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico https://orcid.org/0000-0002-4783-5465
  • Maritza Chan Juarez Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico.l https://orcid.org/0000-0002-4226-6136
  • Blandy Berenice Pamplona Solis Tecnológico Nacional de México/I.T. Chetumal; Insurgentes 330, C.P. 77013, Chetumal, Quintana Roo, Mexico
Keywords: rubberized concrete, construction, crumb rubber, bibliometric analysis, Methodi Ordinatio

Abstract

This work presents a bibliometric study of the literature on the use of caucho in the construction to promote the interest of using rubber as a prime material to reduce pollution at a global level. Published papers in the period 1999-2020 in both databases, Scopus and Web of Science (WoS), are taken into account using the Methodi Ordinatio and the VOSviewer software. A total of 967 documents on the use of rubber in structural and non-structural concrete have been published in this period and 1182 authors have contributed on the subject. Since 2010, the interest of researchers in introducing rubber in construction has increased. China, USA and Australia are the countries with the greatest interest in investigating about rubber-concrete.

Downloads

Download data is not yet available.

References

Al-Salem, S. M., Lettieri, P., Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004 DOI: https://doi.org/10.1016/j.wasman.2009.06.004

Ataria, R. B., Wang, Y. C. (2019). Bending and shear behaviour of two layer beams with one layer of rubber recycled aggregate concrete in tension. Structures, 20, 214–225. https://doi.org/10.1016/j.istruc.2019.03.014 DOI: https://doi.org/10.1016/j.istruc.2019.03.014

Chen, Z., Li, L., Xiong, Z. (2019). Investigation on the interfacial behaviour between the rubber-cement matrix of the rubberized concrete. Journal of Cleaner Production, 209, 1354–1364. https://doi.org/10.1016/j.jclepro.2018.10.305 DOI: https://doi.org/10.1016/j.jclepro.2018.10.305

de Campos, E. A. R., Pagani, R. N., Resende, L. M., Pontes, J. (2018). Construction and qualitative assessment of a bibliographic portfolio using the methodology, Methodi Ordinatio. Scientometrics, 116(2), 815–842. https://doi.org/10.1007/s11192-018-2798-3 DOI: https://doi.org/10.1007/s11192-018-2798-3

Ghosh, S. K. (Ed.). (2019). Waste Management and Resource Efficiency: Proceedings of 6th IconSWM 2016. Springer Singapore. https://doi.org/10.1007/978-981-10-7290-1 DOI: https://doi.org/10.1007/978-981-10-7290-1

Najim, K. B., Hall, M. R. (2012). Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Construction and Building Materials, 27(1), 521–530. https://doi.org/10.1016/j.conbuildmat.2011.07.013 DOI: https://doi.org/10.1016/j.conbuildmat.2011.07.013

Onuaguluchi, O., Panesar, D. K. (2014). Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. Journal of Cleaner Production, 82, 125–131. https://doi.org/10.1016/j.jclepro.2014.06.068 DOI: https://doi.org/10.1016/j.jclepro.2014.06.068

Pagani, R. N., Kovaleski, J. L., Resende, L. M. (2015a). Methodi Ordinatio: A proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105(3), 2109–2135. https://doi.org/10.1007/s11192-015-1744-x

Pagani, R. N., Kovaleski, J. L., Resende, L. M. (2015b). Methodi Ordinatio: A proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105(3), 2109–2135. https://doi.org/10.1007/s11192-015-1744-x DOI: https://doi.org/10.1007/s11192-015-1744-x

Pamplona Solis, B., Cruz Argüello, J. C., Gómez Barba, L., Gurrola, M. P., Zarhri, Z., Trejo Arroyo, D. L. (2019). Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells. Sustainability, 11(23), 6682. https://doi.org/10.3390/su11236682 DOI: https://doi.org/10.3390/su11236682

Pelisser, F., Zavarise, N., Longo, T. A., Bernardin, A. M. (2011). Concrete made with recycled tire rubber: Effect of alkaline activation and silica fume addition. Journal of Cleaner Production, 19(6–7), 757–763. https://doi.org/10.1016/j.jclepro.2010.11.014 DOI: https://doi.org/10.1016/j.jclepro.2010.11.014

Perez, J. G. (2015). Plan de Manejo de Neumáticos Usados de Desecho. 79.

Roychand, R., Gravina, R. J., Zhuge, Y., Ma, X., Youssf, O., Mills, J. E. (2020). A comprehensive review on the mechanical properties of waste tire rubber concrete. Construction and Building Materials, 237, 117651. https://doi.org/10.1016/j.conbuildmat.2019.117651 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117651

Ruwona, W., Danha, G., Muzenda, E. (2019). A Review on Material and Energy Recovery from Waste Tyres. Procedia Manufacturing, 35, 216–222. https://doi.org/10.1016/j.promfg.2019.05.029 DOI: https://doi.org/10.1016/j.promfg.2019.05.029

Su, H., Yang, J., Ling, T.-C., Ghataora, G. S., Dirar, S. (2015a). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022

Su, H., Yang, J., Ling, T.-C., Ghataora, G. S., Dirar, S. (2015b). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022 DOI: https://doi.org/10.1016/j.jclepro.2014.12.022

Thomas, B. S., Gupta, R. C., Panicker, V. J. (2016). Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. Journal of Cleaner Production, 112, 504–513. https://doi.org/10.1016/j.jclepro.2015.08.046 DOI: https://doi.org/10.1016/j.jclepro.2015.08.046

What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. (2019, January 7). Green Growth Knowledge Platform. https://www.greengrowthknowledge.org/research/what-waste-20-global-snapshot-solid-waste-management-2050

Xue, J., Shinozuka, M. (2013). Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Construction and Building Materials, 42, 196–204. https://doi.org/10.1016/j.conbuildmat.2013.01.005 DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.005

Yang, Z., Ji, R., Liu, L., Wang, X., Zhang, Z. (2018). Recycling of municipal solid waste incineration by-product for cement composites preparation. Construction and Building Materials, 162, 794–801. https://doi.org/10.1016/j.conbuildmat.2017.12.081 DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.081

Youssf, O., ElGawady, M. A., Mills, J. E., Ma, X. (2014). An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes. Construction and Building Materials, 53, 522–532. https://doi.org/10.1016/j.conbuildmat.2013.12.007 DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.007

Published
2022-01-01
Section
Documental Research