Evaluación mecánica de concreto y de corrosión en mortero con partículas de neumático reciclado

  • C. Flores Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 8, Zona Universitaria, 78290, San Luis Potosí, San Luis Potosí, MÉXICO
  • S. Rodríguez Área Mecánica y Eléctrica, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 8, Zona Universitaria, 78290, San Luis Potosí, San Luis Potosí, MÉXICO.
  • A. Cárdenas Área Civil, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 8, Zona Universitaria, 78290, San Luis Potosí, San Luis Potosí, MÉXICO.
  • O. Guarneros Área Mecánica y Eléctrica, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 8, Zona Universitaria, 78290, San Luis Potosí, San Luis Potosí, MÉXICO

Abstract

RESUMEN

Se estudió la factibilidad del uso de partículas de neumático reciclado en concreto y morteros. Para evaluar las propiedades mecánicas del concreto endurecido se realizaron pruebas de densidad, resistencia a la compresión y determinación del módulo de elasticidad. Además se determinó la trabajabilidad del concreto en estado fresco mediante la prueba de revenimiento Las muestras se fabricaron con la sustitución de un 5%, 7.5% y 10 % del volumen de la arena por partículas de neumático reciclado. Se determinó mediante la técnica de potencial de corrosión el estado que guardaba en acero revisando de esta manera la probabilidad de corrosión. Para el estudio de la velocidad de corrosión se utilizó la técnica electroquímica de resistencia a la polarización lineal (RPL) en morteros fabricados bajo las mismas condiciones y proporciones que en los concretos. Los resultados mostraron que una mezcla con 7.5% de partículas de neumático reciclado puede ser utilizada en estructuras de resistencia moderada, ligera y ubicadas en ambientes con cloruros.

Palabras clave: Concreto; mortero; neumático reciclado; velocidad de corrosión; Propiedades mecánicas.


ABSTRACT

The feasibility of using scrap tire particles in the elaboration of concrete and mortar was investigated. To assess the mechanical properties of hardened concrete, tests evaluating of its density, modulus elasticity and compression strength were undertaken. To determine the workability of freshly made concrete, a slump test was also performed. Tests in which 5, 7.5 and 10% of sand were substituted by recycled tire particles were made. The likelihood of corrosion on the steel is determined, using the technique of corrosion potential. To test the velocity of corrosion was used the linear polarization resistance method (LPR method) was utilized under the same conditions as well as fabrication of concrete. It was observed that using 7.5% of recycled tire particles offers satisfactory results in structures of moderate strength and lighter weight located in environments with chlorides.

Keywords: Concrete; mortar; recycled tire; corrosion rate; mechanical properties.

Downloads

Download data is not yet available.

References

Angst U., Elsener B., Larsen C., and Vennesland O. (2009), “Critical Chloride Content in Reinforced Concrete — A Review.†Cement and Concrete Research 39 (12) (December): 1122–1138.

Bravo M., and Brito J. (2012), “Concrete Made with Used Tyre Aggregate : Durability-related Performance.†Journal of Cleaner Production 25: 42–50.

IMCYC. 1993. Proporcionamiento De Mezclas. México: Instituto Mexicano del Cemento y del Concreto, A.C.

Li-Cheng L., Chui-Te C. (2007), “A Laboratory Study on Stone Matrix Asphalt Using Ground Tire Rubber.†Construction and Building Materials 21 (5) (May): 1027–1033.

Li G., Stubblefield M., Garrick G., Eggers J., Abadie C., and Huang B. (2004), “Development of Waste Tire Modified Concrete.†Cement and Concrete Research 34 (12) (December): 2283–2289.

Ling T. (2012), “Effects of Compaction Method and Rubber Content on the Properties of Concrete Paving Blocks.†Construction and Building Materials 28 (1): 164–175.

Lu C., Jin W., and Liu R. (2011), “Reinforcement Corrosion-induced Cover Cracking and Its Time Prediction for Reinforced Concrete Structures.†Corrosion Science 53 (4) (April): 1337–1347.

Sten M. and Gary A. (1957), “Electrochemical Polarization No. 1 Theoretical Analysis of the Shape of Polarization Curves.†Journal of the Electrochemical Society: 56-63.

Oikonomou N. and Mavridou S. (2009), “Cement & Concrete Composites Improvement of Chloride Ion Penetration Resistance in Cement Mortars Modified with Rubber from Worn Automobile Tires.†Cement and Concrete Composites 31 (6): 403–407.

Pelisser F., Zavarise N., Arent T., and Michael A. (2011), “Concrete Made with Recycled Tire Rubber : Effect of Alkaline Activation and Silica Fume Addition.†Journal of Cleaner Production 19 (6-7): 757–763.

Rodriguez S. (2005), “Efectos De Una Estracción Electroquimica De Cloruros Sobre El Concreto Armado.†Universidad Autónoma de San Luis Potosí.

Sang K, Hajirasouliha I., and Pilakoutas K. (2011), “Strength and Deformability of Waste Tyre Rubber-filled Reinforced Concrete Columns.†Construction and Building Materials 25 (1): 218–226.

Song Y., Song L., and Zhao G. (2004), “Factors Affecting Corrosion and Approaches for Improving Durability of Ocean Reinforced Concrete Structures.†Ocean Engineering 31 (5-6) (April): 779–789.

Toutanji H A. (1996), “The Use of Rubber Tire Particles in Concrete to Replace Mineral Aggregates.†Cement & Concrete Composites 18 (95): 135–139.

Yung W., Yung L. C., and Hua L. (2013), “A Study of the Durability Properties of Waste Tire Rubber Applied to Self-compacting Concrete.†Construction and Building Materials 41

(April): 665–672.

Published
2013-09-30
How to Cite
Flores, C., RodríguezS., Cárdenas, A., & Guarneros, O. (2013). Evaluación mecánica de concreto y de corrosión en mortero con partículas de neumático reciclado. Revista ALCONPAT, 3(3), 188 - 199. https://doi.org/10.21041/ra.v3i3.54
Section
Applied Research