Influence of the void ratio of cellular concrete on the corrosion of steel reinforcement

Keywords: void ratio, lightweight concrete, reinforcement corrosion

Abstract

The objective of this study was to understand whether voids intensify the triggering of reinforcement corrosion in cellular concrete, for slabs with light specific masses. The methodology was based on four tests: visual inspection, corrosion potential, electrical resistivity, and mass loss. In relation to the L1 family, the L2 and L3 families (higher air content) were shown to be more susceptible to reinforcement corrosion and mass loss from the steel bars in 90% of cases. However, the behavior of some slabs indicates the possibility of the process being asymptomatic with regard to staining, considering that the influence of the cover on the corrosion of the steel bars was verified

Downloads

Download data is not yet available.

References

ABNT – Associação Brasileira de Normas Técnicas. (2003), NBR NM 248: Agregados – Determinação da composição granulométrica. Rio de Janeiro.

ABNT – Associação Brasileira de Normas Técnicas. (2007), NBR 7480: Aço destinado a armaduras para estruturas de concreto armado – Especificação. Rio de Janeiro.

ABNT – Associação Brasileira de Normas Técnicas. (2008), NBR 9833: Concreto fresco - Determinação da massa específica, do rendimento e do teor de ar pelo método gravimétrico. Rio de Janeiro.

ABNT – Associação Brasileira de Normas Técnicas. (2014), NBR 12644: Concreto celular estrutural – Determinação da densidade do concreto no estado fresco. Rio de Janeiro.

Al-Shwaiter, A., Awang, H., Khalaf, M. A. (2021), The influence of superplasticiser on mechanical, transport and microstructure properties of foam concrete. Journal of King Saud University – Engineering Sciences. 1(1):1-9. http://dx.doi.org/10.1016/j.jksues.2021.02.010 DOI: https://doi.org/10.1016/j.jksues.2021.02.010

Alnahhal, A. M., Alengaram, U. J., Yusoff, S., Singh, R., Radwan, M. K. H., Deboucha, W. (2021), Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material. Journal of Building Engineering. 35(1):1-12. http://dx.doi.org/10.1016/j.jobe.2020.102047 DOI: https://doi.org/10.1016/j.jobe.2020.102047

ASTM G1-03, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA, 2017.

ASTM C876-15, Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA, 2015.

Badar, S., Patil, K. K., Bernal, S. A., Provis, J.L., Allouche, E. N. (2014), Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes. Construction and Building Materials, 62(1):79-89. http://dx.doi.org/10.1016/j.conbuildmat.20114.03.015 DOI: https://doi.org/10.1016/j.conbuildmat.2014.03.015

Chung, S-Y., Elrahman, M. A., Kim, J-S., Han, T-S., Stephan, D., Sikora, P. (2019), Comparison of lightweight aggregate and foamed concrete with the same density level using image-based characterizations. Construction and Building Materials. 211(1):988-999. http://dx.doi.org/10.1016/j.conbuildmat.2019.03.270 DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.270

Dong, Y., Su, C., Qiao, P., Sun, L. (2020), Microstructural crack segmentation of three-dimensional concrete images based on deep convolutional neural networks. Construction and Building Materials. 253(1):1-12. http://dx.doi.org/10.1016/j.conbuildmat.2020.119185 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119185

Dong, W., Huang, Y., Lehane, B., Ma, G. (2020), XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Automation in Construction. 114(1):1-11. http://dx.doi.org/10.1016/j.autcon.2020.103155 DOI: https://doi.org/10.1016/j.autcon.2020.103155

Du, F., Jin, Z., She, W., Xiong, C., Feng, G., Fan, J. (2020), Chloride ions migration and induced reinforcement corrosion in concrete with cracks: a comparative study of current acceleration and natural marine exposure. Construction and Building Materials. 263(1):1-11. http://dx.doi.org/10.1016/j.conbuildmat.2020.120099 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120099

Green, W. K. (2020), Steel reinforcement corrosion in concrete – an overview of some fundamentals. Corrosion Engineering, Science and Technology. 55(4):289-302. http://dx.doi.org/10.1080/1478422x.2020.1746039 DOI: https://doi.org/10.1080/1478422X.2020.1746039

Han, W., Lee, J. S., Byun, Y. H (2021), Volume, strength, and stiffness characteristics of expandable foam grout. Construction and Building Materials. 274(1):1-16. http://dx.doi.org/10.1016/j.conbuildmat.2020.122013 DOI: https://doi.org/10.1016/j.conbuildmat.2020.122013

He, T., XU, R.., Chen, C., Yang, L., Yang, R., Yongqi, D. (2018), Carbonation modeling analysis on carbonation behavior of sand autoclaved aerated concrete. Construction and Building Materials. 189(1):102-108. http://dx.doi.org/10.1016/j.conbuildmat.2018.08.199 DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.199

He, X., Zheng, z., Yang, J., Su, Y., Wang, T., Strnadel, B. (2019), Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. Journal of Cleaner Production. 19(2):2-49. https://doi.org/10.1016/j.jclepro.2019.119455 DOI: https://doi.org/10.1016/j.jclepro.2019.119455

Hou, L., Li, J., Lu, Z., Niu, Y. (2021), Influence of foaming agent on cement and foam concrete. Construction and Building Materials. 280(1):1-13. http://dx.doi.org/10.1016/j.conbuildmat.2021.122399 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122399

Kanellopoulos, A., Savva, P., Petrou, M. F., Ioannou, I., Pantazopoulou, S. (2020), Assessing the quality of concrete – reinforcement interface in Self Compacting Concrete. Construction and Building Materials. 240(1):1-12. http://dx.doi.org/10.1016/j.conbuildmat.2019.117933 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117933

Khodabakhshian, A., Brito, J., Ghalehnovi, M., Shamsabadi, E. A. (2018), Mechanical, environmental and economic performance of structural concrete containing silica fume and marble industry waste powder. Construction and Building Materials. 169(1):237-251. http://dx.doi.org/10.1016/j.conbuildmat.2018.02.192 DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.192

Kashani, A., Ngo, T. D., Mendis, P., Black, K. R., Hajimohammadi, A. (2017), A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete. Journal of Cleaner Production. 17(3):1-32. https://doi.org/10.1016/j.jclepro.2017.02.154 DOI: https://doi.org/10.1016/j.jclepro.2017.02.154

Liu, X., Ni, C., Meng, K., Zhang, L., Liu, D., Sun, L. (2020), Strengthening mechanism of lightweight cellular concrete filled with fly ash. Construction and Building Materials. 251(1):1-14. http://dx.doi.org/10.1016/j.conbuildmat.2020.118954 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118954

Liu, X., Sun, D., Liu, D., Meng, K., Ni, C., Shao, Z., Sun, L. (2021), Simulation of ultrasonic propagation in porous cellular concrete materials. Construction and Building Materials. 285(1):1-13. http://dx.doi.org/10.1016/j.conbuildmat.2021.122852 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122852

Lynch, J. P., Farrar, C. R., Michaels, J. E. (2016), Structural health monitoring: technological advances to practical implementations. Proceedings of the Ieee. 104(8):1508-1512. http://dx.doi.org/10.1109/jproc.2016.2588818 DOI: https://doi.org/10.1109/JPROC.2016.2588818

Lokeshwari, M., Bandakli, B. R. P., Tarun, S. R., Sachin, P., Kumar, V. (2021), A review on self-curing concrete. Materials Today: Proceedings. 1(1):1-6. http://dx.doi.org/10.1016/j.matpr.2020.12.859 DOI: https://doi.org/10.1016/j.matpr.2020.12.859

Mariz, J. C. (2013), “Avaliação comparativa do comportamento mecânico de concretos leves com ar incorporadoâ€. Monograph presented as a partial requirement for Bachelor's degree in Civil Engineering from the Polytechnic School of Pernambuco – University of Pernambuco.

Mechtcherine, V., Michel, A., Liebscher, M., Schneider, K., Großmann, C. (2020), Mineral-impregnated carbon fiber composites as novel reinforcement for concrete construction: material and automation perspectives. Automation in Construction. 110(1):1-8. http://dx.doi.org/10.1016/j.autcon.2019.103002 DOI: https://doi.org/10.1016/j.autcon.2019.103002

Michel, A., Sørensen, H. E., Geiker, M. R. (2021), 5 years of in situ reinforcement corrosion monitoring in the splash and submerged zone of a cracked concrete element. Construction and Building Materials. 285(1):1-12. http://dx.doi.org/10.1016/j.conbuildmat.2021.122923 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122923

Namkung, H., Lee, Y-J., Park, J-H., Song, G-D., Choi, J W., Kim, J-G., Park, S-J., Park, J C., Kim, H-T., Choi, Y-C. (2019), Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors. Energy. 187(1):1-13. http://dx.doi.org/10.1016/j.energy.2019.115950 DOI: https://doi.org/10.1016/j.energy.2019.115950

Nascimento, C. F. G., Silva, T. M., Teixeira, I. A. R., Silva, F. G. A., Neves, D. C. M., Pedrosa, P. G. V., Valões, D. C. P., Monteiro, E. C. B. (2021), Influência do agregado reciclado na durabilidade do concreto armado frente a corrosão de armadura desencadeada por carbonatação acelerada. Conjecturas, 21(4):569-599. http://dx.doi.org/10.53660/conj-237-801 DOI: https://doi.org/10.53660/CONJ-237-801

Nguyen, Q. D., Castel, A. (2020), Reinforcement corrosion in limestone flash calcined clay cement-based concrete. Cement And Concrete Research. 132(1):1-15. http://dx.doi.org/10.1016/j.cemconres.2020.106051 DOI: https://doi.org/10.1016/j.cemconres.2020.106051

Pachla, E. C., Silva, D. B., Stein, K. J., Marangon, E., Chong, W. (2021), Sustainable application of rice husk and rice straw in cellular concrete composites. Construction and Building Materials. 283(1):1-11. http://dx.doi.org/10.1016/j.conbuildmat.2021.122770 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122770

RILEM TC 154-EMC. Recommendations of RILEM TC 154-EMC: Electrochemical techniques for measuring metallic corrosion Half-cell potential measurements – Potential mapping on reinforced concrete structures. ISSN: 1359-5997. RILEM Publications SARL. Vol 36, 2003. DOI: https://doi.org/10.1617/13718

Sanchez, J., Andrade, C., Torres, J., Rebolledo, N., Fullea, J. (2016), Determination of reinforced concrete durability with on-site resistivity measurements. Materials and Structures. 50(1):1-10. http://dx.doi.org/10.1617/s11527-016-0884-7 DOI: https://doi.org/10.1617/s11527-016-0884-7

She, W., Zhao, G., Cai, D., Jiang, J., Cao, X. (2018), Numerical study on the effect of pore shapes on the thermal behaviors of cellular concrete. Construction and Building Materials. 163(1):113-121. http://dx.doi.org/10.1016/j.conbuildmat.2017.12.108 DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.108

Shon, C. S., Lee, D., Kim, J. H., Chung, C. W. (2018), Freezing and thawing resistance of cellular concrete containing binary and ternary cementitious mixtures. Construction and Building Materials. 168(1):73-81. https://doi.org/10.1016/j.conbuildmat.2018.02.117 DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.117

Stumm, A., schweike U., Stemmermann, P. (2018), Nanostructured high insulating autoclaved aerated concrete. Mauerwerk. 22(5):329-334. http://dx.doi.org/10.1002/dama.201800024 DOI: https://doi.org/10.1002/dama.201800024

Trong, L. N., Asamoto, S., Matsui, k. (2018), Sorption isotherm and length change behavior of autoclaved aerated concrete. Cement and Concrete Composites. 94(1):136-144. http://dx.doi.org/10.1016/j.cemconcomp.2018.09.003 DOI: https://doi.org/10.1016/j.cemconcomp.2018.09.003

Ye, H., Jin, X., Fu, C., Jin, N., Xu, Y., Huang, T. (2017), Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes. Construction and Building Materials, 140(1):173-183. https://doi.org/10.1016/j.conbuildmat.2017.02.121 DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.121

Yi, Y., Zhu, D., Guo, S., Zhang, Z., Shi, C. (2020), A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cement and Concrete Composites, 113(1):1-14. https://doi.org/10.1016/j.cemconcomp.2020.103695 DOI: https://doi.org/10.1016/j.cemconcomp.2020.103695

Zhang, S., Cao, K., Wang, C., Wang, X., Wang, J., Sun, B. (2020), Effect of silica fume and waste marble powder on the mechanical and durability properties of cellular concrete. Construction and Building Materials, 241(1):1-17. http://dx.doi.org/10.1016/j.conbuildmat.2019.117980 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117980

Zhang, S., Cao, K., Wang, C., Wang, X., Deng, G., Wei, P. (2020), Influence of the porosity and pore size on the compressive and splitting strengths of cellular concrete with millimeter-size pores. Construction and Building Materials. 235(1):1-19. http://dx.doi.org/10.1016/j.conbuildmat.2019.117508 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117508

Published
2022-01-01
How to Cite
Gomes do Nascimento, C. F., de Azevedo Demétrio FilhoA., Marques da Silva, T., & Barreto Monteiro, E. C. (2022). Influence of the void ratio of cellular concrete on the corrosion of steel reinforcement. Revista ALCONPAT, 12(1), 76 - 97. https://doi.org/10.21041/ra.v12i1.507