Passivation process quality in reinforced concrete: effects of polarization periodicity and passivation consolidation parameters on data processing
Abstract
The passivation process quality was studied considering polarization periodicity, passivation consolidation parameters, and data processing. Passivation process quality in steel reinforcement affects a structure’s planned future service life. Some research has addressed this phenomenon, but its study is complicated by the limits of analog-era data, dispersion in corrosion rate data, and their interpretation. Two series of small reinforced concrete specimens were built using two water/cement ratios and two curing/storage combinations and exposed to the marine environment. Polarization periodicity did not affect passivation/depassivation during passivation but on the data processing. The curing and storage process influenced the tendency towards depassivation. Post-curing storage type affected the cumulative corrosion rate from 1 to 5 μA*day/cm2; this is equivalent to the margin of uncertainty in interpretation.
Downloads
References
American Concrete Institute Committe (ACI) (2002). ACI 211-91. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute Committe 211, (Reapproved), 1–38.
Alonso, C., Andrade, C., Castellote, M., Castro, P. (2000). Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar. Cement and Concrete Research, 30(7), 1047–1055. https://doi.org/10.1016/S0008-8846(00)00265-9
Andrade, C., Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315–328. https://doi.org/10.1016/0950-0618(95)00044-5
Andrade, C., Gonzalez, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Materials and Corrosion, 29(8), 515–519. https://doi.org/10.1002/maco.19780290804
Andrade, C., Martinez, I. (2005). Calibration by gravimetric losses of electrochemical corrosion rate measurement using modulated confinement of the current. Materials and Structures, 38(283), 833–841. https://doi.org/10.1617/14297
Andrade, C., Merino, P., Nóvoa, X. R. R., Pérez, M. C. C., & Soler, L. (1995). Passivation of Reinforcing Steel in Concrete. Materials Science Forum, 192–194, 891–898. https://doi.org/10.4028/www.scientific.net/MSF.192-194.891
Andrade, C, Castelo, V., Alonso, C., González, J. A. (1986). The determination of the corrosion rate of steel embedded in concrete by the polarization resistance and AC impedance methods. Corrosion Science, 26, 961–970. https://doi.org/10.1016/0010-938X(86)90086-7
Ahmad, A., Kumar, A. (2013), Chloride ion migration/diffusion through concrete and test methods. International Journal on Advanced Scientific and Technical Research, 6(3), 151–180.
Ahmad, S. (2003), Reinforcement corrosion in concrete structures, its monitoring and service life prediction - A review. Cement and Concrete Composites, 25(4-5 SPEC), 459–471. https://doi.org/10.1016/S0958-9465(02)00086-0
Berke, N. S., Escalante, E., Nmai, C. K., & Whiting, D. (1996). Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures - ASTM STP 1276. American Society for Testing and Materials.
Castro-Borges, P., Balancán-Zapata, M., López-González, A. (2013). Analysis of tools to evaluate chloride threshold for corrosion onset of reinforced concrete in tropical marine environment of Yucatán, México. Journal of Chemistry, 2013, 1–9. https://doi.org/10.1155/2013/208619
Castro-Borges, P., Balancán-Zapata, M., Zozaya-Ortiz, A. (2017). Electrochemical meaning of cumulative corrosion rate for reinforced concrete in a tropical natural marine environment. Advances in Materials Science and Engineering, Article ID 6973605. https://doi.org/10.1155/2017/6973605
Clément, A., Laurens, S., Arliguie, G., & Deby, F. (2012). Numerical study of the linear polarisation resistance technique applied to reinforced concrete for corrosion assessment. European Journal of Environmental and Civil Engineering, (3–4), 1–17. https://doi.org/10.1080/19648189.2012.668012
Ghods, P., Isgor, O. B., McRae, G., Miller, T. (2009). The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement. Cement and Concrete Composites, 31(1), 2–11. https://doi.org/10.1016/j.cemconcomp.2008.10.003
Hansson, C. M., Poursaee, A., Jaffer, S. J. (2012). Corrosion of Reinforcing Bars in Concrete. The Masterbuilder, 15(3). https://doi.org/10.1179/000705980798275535
Huet, B., L’Hostis, V., Miserque, F., Idrissi, H. (2005). Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution. Electrochimica Acta, 51(1), 172–180. https://doi.org/10.1016/j.electacta.2005.04.014
Jiang, J. Y., Wang, D., Chu, H. Y., Ma, H., Liu, Y., Gao, Y., Shi, J., Sun, W. (2017). The passive film growth mechanism of new corrosion-resistant steel rebar in simulated concrete pore solution: Nanometer structure and electrochemical study. Materials, 10(4). https://doi.org/10.3390/ma10040412
Lopez, W., & Gonzalez, J. A. (1993). Influence of the degree of pore saturation on the resistivity of concrete and the corrosion rate of steel reinforcement. Cement and Concrete Research, 23(2), 368–376. https://doi.org/10.1016/0008-8846(93)90102-F
Melchers, R. E., Li, C. Q. (2006). Phenomenological modeling of reinforcement corrosion in marine environments. ACI Materials Journal, 103(1), 25–32. Retrieved from http://0-proquest.umi.com.library.newcastle.edu.au:80/pqdweb?did=1090660671&Fmt=7&clientId=29744&RQT=309&VName=PQD
ONNCCE (2014). NMX-C-414-ONNCCE. Industria de la Construcción - Cementos Hidráulicos - Especificaciones y métodos de prueba. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.
ONNCCE (2015). NMX-C-501-ONNCCE. Industria de la construcción-Durabilidad de estructuras de concreto reforzado-Medición de velocidad de corrosión en campo-Especificaciones y método de ensayo. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.
ONNCCE (2017). NMX-C-530-ONNCCE. Industria de la construcción – Durabilidad – Norma general de durabilidad de estructuras de concreto reforzado – Criterios y Especificaciones. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S. C.
Page, C. L. (2009). Initiation of chloride-induced corrosion of steel in concrete: Role of the interfacial zone. Materials and Corrosion, 60(8), 586–592. https://doi.org/10.1002/maco.200905278
Pech-Canul, M. A., Castro, P. (2002). Corrosion measurements of steel reinforcement in concrete exposed to a tropical marine atmosphere. Cement and Concrete Research, 32(3), 491–498. https://doi.org/10.1016/S0008-8846(01)00713-X
Pedrosa, F., Andrade, C. (2010). Study of corrosion rate variability in indoor and outdoor specimens. In Carmen Andrade & J. Gulikers (Eds.), Advances in Modeling Concrete Service Life: Proceedings of 4th International RILEM (pp. 33–42). Madrid: Springer. https://doi.org/10.1007/978-94-007-2703-8
Poursaee, A., Hansson, C. M. (2007). Reinforcing steel passivation in mortar and pore solution. Cement and Concrete Research, 37(7), 1127–1133. https://doi.org/10.1016/j.cemconres.2007.04.005
Rebolledo, N., Andrade, C. (2010). From corrosion rate to accumulated corrosion depth or loss in cross section of reinforcements. In Carmen Andrade & J. Gulikers (Eds.), Advances in Modeling Concrete Service Life: Proceedings of 4th International RILEM (Vol. 3, pp. 43–51). Madrid: Springer. https://doi.org/10.1007/978-94-007-2703-8
Troconis, O., Romero, A., Andrade, C., Helene, P., DÃaz, I. (1998). Manual de inspección, evaluación y diagnóstico de corrosión en estructuras de hormigón armado (2nd ed.). Red Durar.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.