Especificaciones de cálculo de la vida útil y estado límite de corrosión

  • C. Andrade Centro de Investigación en Seguridad y Durabilidad de Estructuras y Materiales, CISDEM (CSIC-UPM), IETcc-CSIC, España.
Keywords: concrete, chlorides, resistivity, diffusion.

Abstract

Estimates of service life of concrete structures are rapidly moving from laboratories to the standards and to be specified in the construction for large infrastructures. So service life of 100 years or more were required to Oresund bridge or the new Panama Canal. However, the specification is made without defining how to prove the specified durability and in some cases, without even mentioning the tests and limit values to be used. Present communication describes the most important aspects to be specified in the chloride prediction models in addition to the diffusion coefficients, which are the surface concentration, the aging factor, the limit of chlorides and the acceptable probability of corrosion.

Downloads

Download data is not yet available.

References

Andrade C. (1993), “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements”, Cement and Concrete Res., 23, 724-742.

Andrade C. (2004), Calculation of initiation and propagation periods of service-life of reinforcements by using the electrical resistivity. International Symposium on Advances in Concrete through Science and Eng., RILEM Symposium, March 22-24, Evanston (Illinois, USA).

Andrade C. and Tavares F. LIFEPRED. Service Life prediction program, 2012.

Andrade C. and Tavares F. LIFEPROB. Program for the Probabilistic calculation of service life due to chloride ingress. 2012.

Andrade C. Corrosion propagation modelling– 5th International Essen WorkshopTRANSCOND 07. Essen Germany, June 2007. ISBN 978-3-931681-88-3.

Andrade C., Castellote M., D’Andrea R.- Measurement of ageing effect of chloride diffusion coefficients in cementitious matrices- Journal of Nuclear Materials, 412 (2011) 209-216.

Andrade C., Díez J.M., Alonso C. “Mathematical modeling of a concrete surface “skin effect" on Diffusion in chloride contaminated media”. Advances Cement Based Materials, vol.6 (1997) 39-44.

Andrade C., Tavares F. and Castellote M., Petre-Lazars I., Climent M.A., Vera G. Comparison of chloride models: the importance of surface concentration.- 2nd International Symposium on Advances in Concrete through Science and Engineering- September 2006, Quebec City, Canada

Andrade C., Tavares F., Prieto M., Tanner P. and Izquierdo D. Advances in the modelling of the corrosion onset due to chlorides. RILEM WEEK 2011- “Advances in Construction Materials through Science and Engineering” 5-7 September- Hong Kong.

Andrade, C., Alonso, C., Rodríguez, J. (1989), “Remaining service life of corroding structures”, IABSE Symposium on Durability, Lisbon, Sep., pp. 359-363.

Andrade, C., Alonso, M.C., y Gonzalez, J.A. (1990), “An initial effort to use the corrosion rate measurements for estimating rebar durability”, in Corrosion Rates of Steel in Concrete, ASTM STP 1065, eds. N.S. Berke, V. Chaker, y D. Whiting, Philadelphia, USA, pp.29-37.

Andrade C., D'Andrea R. (2010), “Concrete Mixture Design Based on Electrical Resistivity. Second International Conference on Sustainable Construction Materials and Technologies”. Prooceedings of special technical sessions. Eds. Peter Claise, Eshmaiel Ganjian, Fethullan, Tarun R., Naik Ancona, Italia pp. 109-119

Andrade, C., Fullea J., et al. (2001), “The use of the graph corrosion rate-resistivity in the measurement of the corrosion current”. Measurement and Interpretation of the on-Site Corrosion Rate. Rilem Proceedings no. 18: 157-165.

Andrade, C., J. L. Sagrera, et al. (2000). “Several years study on chloride ion penetration into concrete exposed to Atlantic Ocean water”. 2nd International Rilem Workshop on Testing and Modelling the Chloride Ingress into Concrete 19: 121-134.

Baroghel-Bouny, V. (2002), “Which toolkit for durability evaluation as regards chloride ingress into concrete? Part II: Development of a performance approach based on durability indicators and monitoring parameters”. Proceedings of the 3rd International Workshop “Testing and modelling chloride ingress into concrete” Madrid Spain. C. Andrade and J. Kropp editors.

Berke N.L., Dallaire M.P., Hicks M.C., MacDonald A.C. (1986), Holistic approach to durability steel reinforced concrete- Proceedings of the International Conference “Concrete in the service of the Mankind. Radical Concrete Tecnology”, Edited by R.K. Dhir and P. Hewlett, Published by E&FN Spoon UK. 25-45.

Castro-Borges P., P. Helene, Service life of reinforced concrete structures. new approach-2007 ECS - The Electrochemical Society-210th ECS Meeting , Abstract #813.

EHE – 08 Instrucción de hormigón estructural – Ministerio de Fomento. España. Madrid 2008.

Fagerlund, G., “Prediction of the service life of concrete exposed to frost action”, Studies on Concrete Technology – Swedish Cement and Concrete Research Inst. Stockholm (1979), pp. 249- 276.

Helland S., Aarstein R., Maage M. (2008), In-field performance of north sea HSC/HPC offshore plattforms with regard to chloride resistance -8 th International Symposium on Utilisation of High-Streght and High-Performance Concrete, 27-29 October, Tokyo, Japan, pp. 833-840.

Izquierdo D., Alonso C., Andrade C., Castellote M. Potentiostatic determination of chloride threshold values for rebar depassivation. Experimental and statistical study. Electrochimica Acta 49 (2004) 2731–2739.

Maage M., Helland S., Poulsen E., Vennesland, Ø., Carlsen J.E. (1996) “Service Life Prediction of Existing Concrete Structures Exposed to Marine Environment” in: ACI Materials Journal, vol. 93, no. 6 (November-December), pp. 602-608.

Mangat P.S., Molloy B.T. (1994), Predicting of long term chloride concentration in concrete, Materials and Structures 27, 338–346.

Markeset G. (2009), Critical chloride content and its influence on service life predictions Critical chloride content and its influence on service life predictions. Materials and Corrosion, 60, No. 8

Melchers R.E., Structural reliability, analysis and prediction. Ellis Horwood Ltd. John Wiley & Sons.

Model Code 2010. fib (2012)

PNE 83986 Ensayo de durabilidad del hormigón. Determinación de la difusión de iones cloruro.

PNE 83988 – Durabilidad del hormigón – Determinación de la resistividad del hormigón – Parte I (Método directo) y Parte II (Método de Wenner).

PrUNE 83.994 Durabilidad del hormigón. Estrategia de comprobación de la durabilidad.

PrUNE 83992-2 Ensayo de durabilidad del hormigón. Ensayos de penetración de cloruros en el hormigón y de corrosión de la armadura. Método integral acelerado.

PrUNE 83993-1 Ensayo de durabilidad del hormigón. Determinación de la velocidad de penetración de la carbonatación en el hormigón endurecido. Parte 2: método natural.

PrUNE 83993-2 Ensayo de durabilidad del hormigón. Determinación de la velocidad de penetración de la carbonatación en el hormigón endurecido. Parte 2: método acelerado.

Sagüés A.A. (2003), Modeling the Effects of Corrosion on the Lifetime of Extended Reinforced Concrete Structures, Corrosion, October, 854-866.

Serrano G., Obregón J., Rodríguez J., Trigo P., Hué F. y Peset L. (2003), Manufacture of spans for the Öresund bridge between Denmark and Sweden. Hormigón y Acero, nº 230, 4º Trimestre.

Tuutti, K. (1982), “Corrosion of steel in concrete”, Swedish Cement and Concrete Institute (CBI) nº 4-82. Stockholm.

Valenta, O. (1969), “General Analysis ot the methods of testing the durability of concrete”, Rilem Symposium of Durability of Concrete, Paper A-3, Vol. 1.

Published
2013-05-30
How to Cite
Andrade, C. (2013). Especificaciones de cálculo de la vida útil y estado límite de corrosión. Revista ALCONPAT, 3(2), 79 - 97. https://doi.org/10.21041/ra.v3i2.45
Section
Documental Research