Numerical analysis of composite concrete and steel slabs section under fire situation

Keywords: fire safety, composite slabs, steel, concrete.


This work aims to evaluate the performance of composite slabs under fire, correlating them to the project at normal temperature, according to NBR 14323 (ABNT, 2013), NBR 8800 (ABNT, 2008) and NBR 14762 (ABNT, 2010). ), through the heating curve of ISO 834 (ISO, 1999) and distribution of slab temperatures obtained by using Ansys software. The computational models were calibrated according to the standard and extrapolated to other design scenarios, with different geometries, thicknesses and effective thicknesses of the concrete layer. As results, the steel deck with recesses had better performance in relation to the trapezoids, being the thickness of the concrete layer the preponderant variable in the behavior of these slabs at high temperatures, due to their greater thermal stability.


Download data is not yet available.


Associação Brasileira de Normas Técnicas (2013). NBR 14323: Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios em situação de incêndio. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2008). NBR 8800: Projeto de Estruturas De Aço e de estruturas mistas de aço e concreto de edifícios. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2010). NBR 14762: Dimensionamento de estruturas de aço constituídas por perfis formados a frio. Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2012). NBR 15200: Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro.

Bailey, C. G.; White, D. S.; Moore, D. B. (2000), The tensile membrane action of unrestrained composite slabs simulated under fire conditions. Engineering Structures, v. 22, n. 12, p. 1583–1595.

Costa, C. N.; Figueiredo, A. D.; Pignatta, V. (2002), O fenômeno do lascamento (“spalling”) nas estruturas de concreto armado submetidas a incêndio – uma revisão crítica. In: Congresso Brasileiro de Concreto, 44. Anais eletrônicos... Belo Horizonte: IBRACON.

Craveiro, H. D. S. (2010), “Análise do comportamento estrutural de lajes mistas aço-betão com reforço transversal”. Dissertação de mestrado. Universidade de Coimbra, Coimbra.

European Committee for Standardization. (2005), EN 1994-1-2: Design of composite steel and concrete structures – Part 1-2: General rules – structural fire design: Eurocode 4. Bruxelas.

Gillie, M.; Usmani, A. S.; Rotter, J. M. (2001), A structural analysis of the first Cardington test. Journal of Constructional Steel Research, v. 57, n. 6, p. 581–601.

Li, G.; Zhang, N.; Jiang, J. (2017), Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire. Fire Safety Journal. 89:63-76.

Liang, Q. Q. (2015), “Analysis and Design of Steel and Composite Structures”. New York: CRC Press.

Li, G.; Wang, P. (2013), “Advanced Analysis and Design for Fire Safetyof Steel Structures”. China: Zhejiang University Press, Springer.

Nguyen, T. T.; Tan, K. H.; Burgess, I. W. (2015), Behaviour of composite slab-beam systems at elevated temperatures: Experimental and numerical investigation. Engineering Structures, v. 82, p. 199–213.

Omer, E.; Izzuddin, B. A.; Elghazouli, A. Y. (2009), Failure of lightly reinforced concrete floor slabs with planar edge restraints under fire. Journal of Structural Engineering, v. 135, n. 9, p. 1068–1080.

Selamet, S.; Bolukbas, C. (2016), Fire resilience of shear connections in a composite floor: Numerical investigation. Fire Safety Journal, v. 81, p. 97–108.

Vargas, M. R.; Silva, V. P. (2005), Resistência ao fogo das estruturas de aço. Rio de Janeiro: IBS/CBCA.

Wang, Y. C. (2002), “Steel and Composite Structures:Behaviour and Design for Fire Safety”.1 ed. London: Rolla Press.

How to Cite
Barcellos, F., Bolina, F., & Tutikian, B. (2019). Numerical analysis of composite concrete and steel slabs section under fire situation. Revista ALCONPAT, 10(1), 69 - 78.
Applied Research