Inspection of pathological manifestations in buildings using a thermal imaging camera integrated with an Unmanned Aerial Vehicle (UAV): a documented research
Abstract
This paper is intended to present usage of UAV integrated thermographic cameras in building inspection processes. This study was based on a systematic review of related articles and technical documents, in order to investigate features and basic operations of thermographic cameras, UAVs usage and influencing factors on detection of pathological manifestations. The results enabled identification of advantages and limitations for camera and UAV integration, thus demonstrating their feasibility and effectiveness when employed together. As a contribution, this study developed a flight protocol including steps and procedures required to perform an inspection using a thermal camera together with an UAV.
Downloads
References
Agência nacional de aviação civil. (2017). Requisitos gerais para aeronaves não tripuladas de uso civil - RBAC-E nº 94. Resolução n. 419. Brasília.
Agostinho, S. L. (2012), “Inspeção e Monitorização de Estruturas em Engenharia Civil – Utilização de UAV na Inspeção e Monitorização”, Dissertação de Mestrado, Universidade da Madeira, p. 105.
Álvares, J., Costa, D. B., Melo, R. R. S., Bello, A. (2016), “Estudo exploratório de mapeamento 3D de canteiros de obras utilizando veículos aéreos não tripulados”, In: XVI Encontro Nacional de Tecnologia do Ambiente Construído, São Paulo, Brasil, pp. 5067-5080.
Andrade, R. P., Resende, M. M., Maranhão, F. L., Portella, F., Bulzico, B. (2019), “Estado da arte da utilização da técnica de termografia embarcada em drones para inspeção de revestimentos de fachadas”, In: 2º Workshop de Tecnologia de Processos e Sistemas Construtivos, São Paulo, Brasil, p.5, disponível em: https://antaceventos.net.br/index.php/tecsic/tecsic2019/paper/view/304/139
Ariwoola, R. T. (2016), “Use of Drone and Infrared Camera for a Campus Building Envelope Study”, Master Thesis, East Tennessee State University, p. 83. https://dc.etsu.edu/etd/3018
Asdrubali, F., Baldinelli, G., Bianchi, F. (2012), A quantitative methodology to evaluate thermal bridges in buildings. Applied Energy. 97(1):365–373. https://doi.org/10.1016/j.apenergy.2011.12.054
Associação Brasileira de Normas Técnicas. (2013). NBR 15572: Ensaios não destrutivos — Termografia — Guia para inspeção de equipamentos elétricos e mecânicos. Rio de Janeiro.
Barreira, E. (2004), “Aplicação da Termografia ao Estudo do Comportamento Higrotérmico dos Edifícios”, Dissertação de Mestrado, Universidade do Porto, p. 198.
Barreira, E., de Freitas, S. S., de Freitas, V. P., Delgado, J. M. P. Q. (2013), Infrared thermography application in buildings diagnosis: a proposal for test procedures, industrial and technological applications of transport in porous materials. Advanced Structured Materials. 36. https://doi.org/10.1007/978-3-642-37469-2_4
Batista, T. S. (2019), “Avaliação do desempenho da termografia infravermelha em diferentes espessuras e profundidades de trincas em edificações”, Dissertação de Mestrado, Universidade de Pernambuco, p. 109.
Bauer, E., Castro, E. K., Antunes, G. R., Leal, F. E. (2011), “Identification and Quantification of Pathologies in Facades of New Buildings in Brasília” in: XII DBMC International Conference on Durability of Building Materials and Components, Porto, Portugal.
Bauer, E., Freitas, V. P., Mustelier, N., Barreira, E., Freitas, S. (2015), Infrared Termography – Evaluation of the results reproducibility. Structural Survey. 33(1): 82-86. https://doi.org/10.1108/ss-05-2014-0021
Bauer, E., Pavón, E., (2015), Termografia de infravermelho na identificação e avaliação de manifestações patológicas em edifícios. Revista Concreto e Construções.79:93-98. ISSN:1809-7197.
Bento, M. F. (2008), “Unmanned aerial vehicles: an overview”, Inside GNSS, pp. 54-61.
Brique, S. K. (2016), “Emprego da termografia infravermelha no diagnóstico de falhas de aderência de peças cerâmicas utilizadas em fachadas de edifícios”, Dissertação de Mestrado, Universidade Federal de Santa Catarina, p. 180
Caldeira, M. M., Padaratz, I. J. (2015), Potentialities of infrared thermography to assess damage in bonding between concrete and GFRP. Ibracon Structures and Materials Journal. 8:296-322. http://dx.doi.org/10.1590/S1983-41952015000300004
Cengel, Y. A., Ghajar, A. J. (2012), “Transferência de Calor e Massa - Uma Abordagem Prática” (Porto Alegre, Brasil: Amgh Editora), p. 906.
Cerdeira, F., Vázquez, M., Collazo, J., Granada, E. (2011), Applicability of infrared thermography to the study of the behaviour of stone panels as building envelopes. Energy Build. 43:1845–1851. https://doi.org/10.1016/j.enbuild.2011.03.029
Chu, A-M., Westerhoff1, L., Sheppard1, S., Storey, S., Goodhew, J., Fox, M., Goodhew, S., Pahl, S., Higgins, C. (2016), “Exploring the Use of Thermal Imagery for the Promotion of Residential Energy Efficiency. Report prepared for the City of Vancouver”, available at: http://calp2016.sites.olt.ubc.ca/files/2016/05/Thermal-Imaging-Report.pdf
Comitti, A. (2012), “Engenharia de manutenção: Uso da Termografia”, Revista Saber Eletrônica, 47(459):14-19.
Cortizo, E. C. (2007), “Avaliação da técnica de termografia infravermelha para identificação de estruturas ocultas e diagnóstico de anomalias em edificações: ênfase em edificações do patrimônio histórico”, Tese de Doutorado, Universidade Federal de Minas Gerais, p. 178.
Cortizo, E. C., Barbosa, M. P., Souza, L. A. C. (2008), Estado da Arte da Termografia. Ambiente Construído e Patrimônio Sustentável. 2(2):158-193.
Domingues, A. D. (2015), “Identificação de manifestações patológicas em fachadas prediais com revestimento cerâmico, utilizando a técnica de termografia de infravermelho”, Monografia de Graduação, Universidade Católica de Brasília, p. 29.
Edis, E., Flores-Colen, I., de Brito, J. (2014), Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Construction and Building Materials. 51(1):187-197. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.085
Ellenberg, A., Kontsos, A., Moon, F., Bartoli, I. (2016), Bridge deck delamination identification from unmanned aerial vehicle infrared imagery. Automation in Construction. 72(1):155-165. https://doi.org/10.1016/j.autcon.2016.08.024
Entrop, A. G., Vasenev, A. (2017), Infrared drones in the construction industry: designing a protocol for building thermography procedures. Energy Procedia. 132(1):63-68. https://doi.org/10.1016/j.egypro.2017.09.636
Farrag, S., Yehia, S., Qaddoumi, N. (2016), Investigation of Mix-Variation Effect on Defect-Detection Ability Using Infrared Thermography as a Nondestructive Evaluation Technique, J. Bridge Eng. 21(3):1-15. http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0000779
Ferreira, J. B., Lobão, V. W. N. (2018). Manifestações patológicas na construção civil. Caderno De Graduação - Ciências Exatas E Tecnológicas. 5(1):71-80. Disponível em: https://periodicos.set.edu.br/cadernoexatas/article/view/5853
Freimuth, H., König, M. (2018), Planning and executing construction inspections with unmanned aerial vehicles. Automation in Construction. 96(2):540–553. https://doi.org/10.1016/j.autcon.2016.08.024
Freitas, J. G., Carasek, H., Cascudo, O. (2014), Utilização de termografia infravermelha para avaliação de fissuras em fachadas com revestimento de argamassa e pintura. Ambiente Construído. 14(1):57-73. https://doi.org/10.1590/S1678-86212014000100006
Freitas, S. S., Freitas, V. P., Barreira, E. (2014), Detection of façade plaster detachments using infrared thermography – A nondestructive technique. Construction and Building Materials. 70(1):80-87. https://doi.org/10.1016/j.conbuildmat.2014.07.094
Grinzato, E. (2011), “State of the art and perspective of infrared thermography applied to building science” in: Meola C, editor. Infrared thermography recent advances and future trends. Bentham Books. ISBN: 978-1-60805-521-0, http://dx.doi.org/10.2174/97816080514341120101
Grinzato, E., Ludwig, N., Cadelano, G., Bertucci, M., Gargano, M., Bison, P. (2011), Infrared Thermography For Moisture Detection: a laboratory study and in-situ test. Materials Evaluation. 69(1):97-104.
Harvey, M. C., Rowland, J. V., Luketina, K. M. (2016), Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand. Journal of Volcanology and Geothermal Research. 325(1):61-69. https://doi.org/10.1016/j.jvolgeores.2016.06.014
Hiasa, S., Catbas, F., Matsumoto, M., Mitani, K. (2016), Monitoring concrete bridge decks using infrared thermography with high speed vehicles. Structural Monitoring and Maintenance, 3(3): 277-296. https://doi.org/10.12989/smm.2016.3.3.277
Infrared Training Center – ITC. (2014). Manual do usuário – Certificação Nível 1. Sorocaba.
Jorge, L. A. C., Inamasu, R. Y., “Uso de veículos aéreos não tripulados (VANT) em agricultura de precisão”in: A. Bernadi, J. Naime, A. Resende, L. Bassoi, Y. Inamasu (Ed.) (2014), Agricultura de precisão: resultados de um novo olhar. Brasília, DF: Embrapa, pp. 109-134.
Kayan,H., Eslampanah, R., Yeganli, F., Askar, M. (2018), "Heat leakage detection and surveiallance using aerial thermography drone" in: 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, pp. 1-4. https://doi.org/10.1109/SIU.2018.8404366
Labat, M., Garnier, G., Woloszyn, M., Roux, J. J. (2011), “Infrared measurements on ventilated cladding for assessing its surface temperature and insulated part of the envelope using a simulation tool” in: NBS 2011 – 9th Nordic Symposium on Building Physics, Tampere, Finland, pp. 315-322.
Lavars, N. (2015), “How drones are poised to help build the cities of tomorrow”, acesso em 1 de julho de 2019, disponível em: http://www.gizmag.com/drones-building-constructionindustry/36306/
Lerma, J. L., Cabrelles, M., Portalés, C. (2011), Multitemporal thermal analysis to detect moisture on a building façade. Construction and Building Materials. 25(1):2190-2197. https://doi.org/10.1016/j.conbuildmat.2010.10.007
Maldague, X., Marinetti, S. (1996), Pulse phase infrared thermography. Journal Applied Physics. 79(1):2694-2698. https://doi.org/10.1063/1.362662
Mavromatidis, L. E., Dauvergne, J. L., Saleri, R., Batsale, J. C. (2014), First experiments for the diagnosis and thermophysical sampling using impulse IR thermography from Unmanned Aerial Vehicle (UAV). Quantitative InfraRed Thermography. http://dx.doi.org/10.21611/qirt.2014.213
Melo, R. R. S., Costa, D. B. (2015), “Uso de veículo aéreo não tripulado (VANT) para inspeção de logística em canteiros de obra”. in: SIBRAGEC-ELAGEC, São Carlos, pp. 674-681.
Meola, C., Carlomagno, G. (2004), Recent advances in the use of infrared thermography. Measurement Science and Technology. 15(9):27-58. http://dx.doi.org/10.1088/0957-0233/15/9/R01
Mistry, B. D. (2009), “A Handbook of Spectroscopic Data” (Oxford, England: Oxford Book Company), p. 247.
Muñoz, C. Q. G., Marquez, F. P. G., Lev, B., Arcos, A. (2017), New pipe notch detection and location method for short distances employing ultrasonic guided waves. Acta Acustica united with Acustica. 103(5):772-781. https://doi.org/10.3813/AAA.919106
Nascimento, M. L. M. (2014), “Utilização de drone e termografia na detecção de manifestações patológicas em edificações”, Monografia de Graduação, Universidade Católica de Brasília, p. 21.
O. T. Takeda, W. Mazer (2018), Potencial da análise termográfica para avaliar manifestações patológicas em sistemas de revestimentos de fachadas. Revista ALCONPAT. 8(1):38-50 http://dx.doi.org/10.21041/ra.v8i1.181
Ocaña, S., Guerrero, I., Requena, I. (2004), Thermographic survey of two rural buildings in Spain. Energy Build, 36(6):515-523. https://doi.org/10.1016/j.enbuild.2003.12.012
Pajares, G. (2015), Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing. 81(1):281-329. https://doi.org/10.14358/PERS.81.4.281
Ramírez, I. S., Marugán, A. P., Márquez, F. P. G. (2018), “Remotely Piloted Aircraft System and Engineering Management: A Real Case Study” in: Xu J., Cooke F., Gen M., Ahmed S. (eds) Proceedings of the Twelfth International Conference on Management Science and Engineering Management. Springer, Cham. pp. 1173-1185. https://doi.org/10.1007/978-3-319-93351-1_92
Rehman, S., Ibrahim, Z., Memon, S., Jameel, M. (2016), Nondestructive test methods for concrete bridges: A review. Construction and Building Materials. 107(15):58-86. http://dx.doi.org/10.1016/j.conbuildmat.2015.12.011
Rocha, J. H. A., Póvoas Y. V. (2017), Infrared thermography as a non-destructive test for the inspection of reinforced concrete bridges: A review of the state of the art. Revista ALCONPAT. 7(3):200-214. http://dx.doi.org/10.21041/ra.v7i3.223
Rocha, J. H. A., Santos, C. F., Oliveira, J. B., Albuquerque, L. K. S., Póvoas, Y. V. (2018), Detecção de infiltração em áreas internas de edificações com termografia infravermelha: estudo de caso. Ambiente Construído, 18(4): 329-340. https://doi.org/10.1590/s1678-86212018000400308
Sham, J., Lo, T., Memon, S. (2012), Verification and application of continuous surface temperature monitoring technique for investigation of nocturnal sensible heat release characteristics by building fabrics. Energy Build. 53:108–116. https://doi.org/10.1016/j.enbuild.2012.06.018
Siebert, S., Teizer, J. (2014), Mobile 3D mapping for surveying earthwork projects using na Unmanned Aerial Vehicle (UAV) system. Automation in Construction. 41:1-14. https://doi.org/10.1016/j.autcon.2014.01.004
Silva, A. F. (2007), “Manifestações patológicas em fachadas com revestimento argamassado: Estudo de caso em edifícios em Florianópolis”, Dissertação de Mestrado, Universidade Federal de Santa Catarina, p. 190.
Topdrone. (2020), “DJI Mavic 2 Enterprise Dual”, acesso em 25 de setembro de 2020, disponível em: https://www.topdrone.com.br/dji-mavic-2-enterprise-dual/p
Uemoto, T. (2000), “Maintenance of concrete structure and application of nondestructive inspection in Japan”, in: T. Uemoto (Ed.), Proc. Non-Destructive Testing in Civil Eng., ELSEVIER, 2000, Kidlington: OX (UK), pp. 1–11.
Viana, L. A., Zambolim, L., Sousa, T. V., Tomaz, D. C. (2018), Potencial uso de câmera termal acoplada a VANT para monitoramento de culturas. Brazilian Journal of Biosystems Engineering. 12(3):286-298. http://dx.doi.org/10.18011/bioeng2018v12n3p286-298
Viégas, D. J. A. (2015), “Utilização da termografia infravermelha em fachadas para verificação de descolamento de revestimento”, Dissertação de Mestrado, Universidade de Pernambuco, p. 165.
Watase, A., Birgul, R., Hiasa, S., Matsumoto, M., Mitani, K., Catbas, F. (2015), Practical identification of favorable time windows for infrared thermography for concrete bridge evaluation. Construction and Building Materials. 101(1):1016-1030. https://doi.org/10.1016/j.conbuildmat.2015.10.156
Witczuk, J., Pagacz, S., Zmarz, A., Cypel, M. (2017), Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests - preliminary results. International Journal of Remote Sensing. 39:5504-5521. https://doi.org/10.1080/01431161.2017.1390621
Yehia, S., Adudayyeh, O., Nabulsi, S., Abdelqader, I. (2007), Detection of common defects in concrete bridge decks using nondestructive evaluation techniques. Journal of Bridge Engineering, 12, (2):215-225. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(215)
Zhang, J., Jung, J., Sohn, G., Cohen, M. (2015), “Thermal Infrared Inspection of Roof Insulation Using Unmanned Aerial Vehicles” in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, International Conference on Unmanned Aerial Vehicles in Geomatics, Toronto, Canada, pp. 1-6. https://doi.org/10.5194/isprsarchives-XL-1-W4-381-2015
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.