Importancia de la evaluación de sismo seguido de incendio en Mendoza, Argentina

  • N. G. Maldonado Centro Regional de Desarrollos Tecnológicos para la Construcción, Sismología e Ingeniería Sísmica, Facultad Regional Mendoza, Universidad Tecnológica Nacional, Rodríguez 273, Ciudad , Mendoza, República Argentina.
  • S. Albiol Escuela de IV Nivel, Facultad Regional Mendoza, Universidad Tecnológica Nacional, República Argentina
Keywords: earthquake; fire; damage; risk, losses

Abstract

Fire following earthquakes producessignificant loss of life and economic damages. For the centralwestern Argentina records show that earthquake damages caused fire and disruption of services. It is proposed the evolution of the resistant earthquake design incorporating other risks. Great Mendoza situation is analyzed in function of the current data and the estimated damages in the structures taking into account the architectural and structural design, the materials and the facilities. The evaluation of service life of construction and the available services detect an important problem in the existing buildings, most of them dwellings that warrants prevention planning by users and responsible authorities.

Keywords: earthquake; fire; damage; risk, losses

Downloads

Download data is not yet available.

References

ASCE/SEI/SFPE 29-99. (2003), Standard Calculation Methods for Structural Fire Protection. American Society of Civil Engineers and Society of Fire Protection Engineers.

CeReDeTeC. Memorias anuales 2007-2010.

COST Action C26. (2008). Urban Habitat Constructions Under Catastrophic Events. Eds: Mazzolani F et al. Universidad de Malta Directrices para la Prevención de los Desastres Naturales, la Preparación para Casos de Desastre y la Mitigación de sus Efectos. Estrategia y Plan de Acción de Yokohama para un Mundo más Seguro

(1994). Conferencia Mundial sobre la Reducción de los Desastres Naturales Yokohama, Japón, del 23 al 27 de mayo de 1994. pp.17

Diario Los Andes (2013). Una ONG local pide que se indemnice a usuarios afectados. 16/02/2013.

Doña, W. J.; Macaluzzo, G.; Silva, C. G.; Leiva; E. L.(2010). Evaluación de la vulnerabilidad sísmica de Mendoza mediante un software específico. Universidad Tecnológica Nacional Facultad Regional Mendoza Departamento Ingeniería Civil Proyecto Integrador. p. 213

Eurocode 2 (1996). Design of Concrete Structures – Part 1.2 General Rules – Structural Fire Design, European. Committee for Standardisation (CEN), DD ENV 1992-1-2:1996.

FEMA 403 (2002) World Trade Center Building Performance Study. Federal Emergency Management Agency

FEMA 440 (2005) Improvement of Nonlinear Static Seismic Analysis Procedures. Federal Emergency Management Agency

FEMA 454 (2006) Designing for Earthquakes: A Manual for Architects. Federal Emergency Management Agency

Healey M. El peronismo entre las ruinas. El terremoto y la reconstrucción de San Juan. Editorial Siglo XXI. 2012. p. 376, http://www.censo2010.indec.gov.ar/

ICUS/INCEDE (1995). The First 55 Hours. Great Hanshin Earthquake, January 17, 1995.

ICUS/INCEDE NEWSLETTER International Center for Urban Safety Engineering, Institute of Industrial Science, The University of Tokyo, Special Issue. January 1995. pp.20

IFC (2011). International Fire Code. International Code Council.

INPRES-CIRSOC 103. (2005) Reglamento Argentino de Construcciones Sismorresistentes. INTIINPRES-CIRSOC. V. 1, 2, 3, 4.

INPRES. Gran Mendoza, el núcleo urbano expuesto al mayor nivel de riesgo sísmico en la República Argentina. Publicación Técnica Nº 10. Setiembre de 1986.

INPRES (1989). Microzonificación sísmica del Gran Mendoza.

Keshishian P., Khater M., Khemici O, Chavez J. (2012). The Problem of “Burnt Rubble” in Fire Following Earthquake. Proceedings 15th World Conference on Earthquake Engineering, Lisboa,

Koshimura S. (2011). The 2011 Great East Japan Earthquake tsunami disaster: its impact and lessons for renovation, ICUS/INCEDE NEWSLETTER International Center for Urban Safety Engineering, Institute of Industrial Science, The University of Tokyo V. 11, n.3, oct-dec 2011. Ley 19587

NIST GCR 04-872. Fire Protection of Structural Steel in High-Rise Buildings. Michael G. Goode, Editor. 2004. pp. 88

Ortega N.F., Señas L., Priano C. (2008). Caracterización física-mecánica de hormigones expuestos a elevada temperatura. III Congreso Internacional 17º Reunión Técnica Asociación Argentina de Tecnología del Hormigón, Córdoba, Argentina, pp.193-200.

PEER (2008). Post-Earthquake Fire in Tall Buildings and the New Zealand Building Code. Fire Engineering. Research Report 03/6. University of Canterbury, Christchurch, New Zealand.

Scawthorn, C. (1987). Fire following earthquake: estimates of the conflagration risk to insured property in greater Los Angeles and San Francisco, All-Industry Research Advisory Council, Oak Brook, Ill.

Scawthorn, C. (2000). The Marmara, Turkey Earthquake of August 17, 1999: Reconnaissance Report, MCEER Tech. Rpt. MCEER-00-0001, Multidisciplinary Center for Earthquake Engineering Research, SUNY, Buffalo.

Scawthorn, C. (2008) The ShakeOut Scenario. U.S.G. R. SPA Risk LLC, Berkeley CA www.iccsafe.org

Scawthorn, C., Cowell, A. D., and Borden, F. (1998). "Fire-related aspects of the Northridge earthquake." NIST GCR 98-743; National Institute of Standards and Technology Building and Fire Research Laboratory, Gaithersburg, MD, v. 1.

Scawthorn, C., O'Rourke, T. D., and Blackburn, F. T. (2006). "The 1906 San Francisco Earthquake and Fire---Enduring Lessons for Fire Protection and Water Supply." Earthquake Spectra, 22(S2), S135-S158.

Verdaguer, J. A.(1931) Historia Eclesiástica de Cuyo. Tomo I y II. Premiato Scuola Tipográfica Salesiana, Milano, Italia.

Published
2013-01-30
How to Cite
Maldonado, N. G., & Albiol, S. (2013). Importancia de la evaluación de sismo seguido de incendio en Mendoza, Argentina. Revista ALCONPAT, 3(1), 69 - 78. https://doi.org/10.21041/ra.v3i1.44
Section
Documental Research