Performance of fire protective coatings in reinforced concrete elements submitted to high temperatures

  • Carlos Amado Britez Universidade de São Paulo
  • V. P. Silva Professor da Escola Politécnica da USP, São Paulo.
  • M. Carvalho Universidade Presbiteriana Mackenzie, São Paulo
  • Paulo Helene Professor Titular da Escola Politécnica da USP, PhD Engenharia, São Paulo
Keywords: fire, fire protection coating, concrete, passive fire protection, experimental tests.

Abstract

This article aims to compare different fire-resistant coating systems to 1.5 cm cover and one-year-old reinforced concrete elements for evaluating the performance of these systems by visual inspection and verification of internal temperature evolution after standard fire simulations under the ISO 834 curve by using thermocouples for a time of 120 minutes. The results showed very close correlations with the literature for cement-based mortar coatings, as well as other particularities about plaster coatings and the possibility of using intumescent paints as passive protection in reinforced concrete elements.

References

Alexander, B. (1982). Behaviour of gypsum and gypsum products at high temperatures. RILEM Committee PHT-44, British Gypsum, East Leake, Loughborough, England.

Almeida, D. F. (1984). As estruturas de concreto armado e o fogo, comportamento, consequências, restauração. Dissertação (mestrado) - Escola Politécnica, Universidade de São Paulo, São Paulo.

Associação Brasileira de Normas Técnicas. (1980). NBR 5627: Exigências particulares das obras de concreto armado e protendido em relação à resistência ao fogo. Rio de Janeiro, 3 p.

Associação Brasileira de Normas Técnicas. (2014). NBR 6118: Projeto de estruturas de concreto, procedimentos. Rio de Janeiro, 238 p.

Associação Brasileira de Normas Técnicas. (2017). NBR 13207: Gesso para construção civil - Requisitos. Rio de Janeiro, 3 p.

Associação Brasileira de Normas Técnicas. (2001). NBR 14432: Exigências de resistência ao fogo de elementos construtivos de edificações, Procedimento. Rio de Janeiro, 14 p.

Associação Brasileira de Normas Técnicas. (2012). NBR 15200: Projeto de estruturas de concreto em situação de incêndio. Rio de Janeiro, 48 p.

Atefi, H., Nadjai, A., Ali, F. (2017). Numerical and experimental investigation of the thermal behaviour of coated cellular beamns with intumescent coatings at elevated temperatures. In: IFireSS 2017 – 2nd International Fire Safety Symposium. Naples, Italy, June 7-9. p. 257-264.

Kodur, V. K. R. (2005). Guidelines for fire resistance design of high-strength concrete columns. Ottawa, Ontário, Canadá: IRC/NRC. (Report NRCC-47729). Disponível em: <http://irc.nrc-cnrc.gc.ca/pubs/fulltext/nrcc47729/>. Acesso em: novembro de 2007.

Landi, F. R. (1986). Ação do incêndio sobre as estruturas de concreto armado. Boletim técnico nº 01/86. São Paulo: Escola Politécnica, Universidade de São Paulo. 24p.

Lucherini, A., Maluk, C. (2017). Novel test methods for studying the fire performance of thin intumescent coatings. In: IFireSS 2017 – 2nd International Fire Safety Symposium. Naples, Italy, June 7-9. p. 565-572.

Malhotra, H. L. (1982). Properties of Materials at High Temperatures — Report on the work of technical committee 44-PHT. Materials and Structures/Matériaux et Constructions. Vol. 15. N° 86. RILEM, Paris.

Ogrin, A., Saje, M., Hozjan, T. (2017). Effect of incomplete expansion of intumescent coating on mechanical response of steel frame in fire. In: IFireSS 2017 – 2nd International Fire Safety Symposium. Naples, Italy, June 7-9. p. 365-372.

Silva, D., Bilotta, A., Nigro, E. (2017). Experimental analysis on the effectiveness of intumescent coatings in fire. In: IFireSS 2017 – 2nd International Fire Safety Symposium. Naples, Italy, June 7-9. p. 249-256.

Silva, V. P. (2012). Projeto de estruturas de concreto em situação de incêndio, conforme ABNT NBR 15200:2012. São Paulo: Blucher.

Published
2019-12-30
Section
Basic Research