Natural additive (nopal mucilage) on the electrochemical properties of concrete reinforcing steel

  • Yohandry Díaz Blanco Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAP), Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, México.
  • Elsa Carmina Menchaca Campos Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAP), Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, México.
  • Carolin Ivette Rocabruno Valdés Centro de Investigación y Desarrollo Tecnológico (CENIDET), Tecnológico Nacional de México (TecNM).
  • Jorge Uruchurtu Chavarín Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAP), Instituto de Investigación en Ciencias Básicas y Aplicadas (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, México.
Keywords: nopal mucilage, reinforcing concrete, electrochemical techniques, corrosion.


In this investigation the effect of Nopal mucilage on the electrochemical properties of concrete was evaluated. Three concentrations of this additive were designed with a Nopal-water ratio of 1:1, 1:2 and 1:3. Compressive tests were performed after 28 days of curing. Specimens were evaluated for 270 days through various electrochemical techniques such as: Open Circuit Potential (OCP), Electrochemical Noise (EN) and Linear Polarization Resistance (LPR). Results indicate a decrease in compressive resistance in samples with Nopal mucilage at 28 days. The onset of steel corrosion was delayed and the corrosion rate was lower for samples with Nopal mucilage. The conservation and storage of this additive before being used in concrete can be a challenge to analyze.


Download data is not yet available.


Aballe, A., Bautista, A., Bertocci, U. and Huet, F. (2001), ‘Measurement of the noise resistance for corrosion applications’, Corrosion. 57(1):35–42. doi:

Andrade, C., Keddam, M., Nóvoa, X. R., Pérez, M. C., Rangel, C. M. and Takenouti, H. (2001), ‘Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry’, Electrochimica Acta. 46: 3905–3912. doi:

Andrade, C., Alonso, C., Gulikers, J., Polder, R., Cigna, R., Vennesland Ø., Salta, M., Raharinaivo, A. and Elsener, B. (2004), ‘Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method’, Materials and Structures/Materiaux et Constructions. 37(273):623–643. doi:

Andrade, C. and Alonso, C. (1996), ‘Corrosion rate monitoring in the laboratory and on-site’, Construction and Building Materials. 10(5):315–328. doi:

Andrade, C. and Buják, R. (2013), ‘Effects of some mineral additions to Portland cement on reinforcement corrosion’, Cement and Concrete Research. 53:59–67. doi:

Bing, Z., Jian-Hua L., Rong-Gang H., Rong-Gui D. and Chang-Jian L. (2007), ‘Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements’, Electrochimica Acta. 52(12):3976–3984. doi:

Cárdenas, A., Higuera-Ciapara, I. and Goycoolea, F. M. (1997), ‘Rheology and Aggregation of Cactus (Opuntia ficus-indica) Mucilage in Solution’, Journal of the Professional Association for Cactus Development. 2:152–159.

Caré, S. and Raharinaivo, A. (2007), ‘Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel’, Cement and Concrete Research. 37(12):1598–1612. doi:

Chandra, S., Eklund, L. and Villarreal, R. R. (1998), ‘USE OF CACTUS IN MORTARS AND CONCRETE.’, Cement and Concrete Research. 28(1):41-51.

Cottis, R. A. (2001), ‘Interpretation of Electrochemical Noise Data’, Corrosion. 57(3):265–285.

Díaz-Cardenas, M. Y. Valladares-Cisneros, M. G., Lagunas-Rivera, S., Salinas-Bravo, V. M., Lopez-Sesenes, R. and Gonzalez-Rodríguez, J. G. (2017) ‘Peumus boldus extract as corrosion inhibitor for carbon steel in 0.5 M sulfuric acid’, Green Chemistry Letters and Reviews, 10(4): 257–268. doi:

Dúran-Herrera, A., De-León, R., Juárez, C. A. and Valdez, P. (2012), Mucilago de nopal como reductor de retracción en concreto auto-consolidable, ANAIS DO 54o CONGRESSO BRASILEIRO DO CONCRETO - CBC2012 – 54CBC, (Brazil), pp. 1-18.

Girija, S., Kamachi Mudali, U., Khatak, H. S. and B. Raj, (2007), ‘The application of electrochemical noise resistance to evaluate the corrosion resistance of AISI type 304 SS in nitric acid’, Corrosion Science. 49:4051–4068. doi:

González, J. A., Miranda, J. M. and Feliu, S. (2004), ‘Considerations on reproducibility of potential and corrosion rate measurements in reinforced concrete’, Corrosion Science. 46:2467–2485. doi:

Gusmano, G., Montesperelli, G., Pacetti, S., Petitti, A. and D'Amico, A. (1997), ‘Electrochemical Noise Resistance as a Tool for Corrosion Rate Prediction’, Corrosion. 53(11):860–868. doi:

Hansson, C. M. (1984), ‘Comments on electrochemical measurements of the rate of corrosion of steel in concrete’, Cement and Concrete Research. 14(4):574–584. doi:

Kearns, J. R., Scully, J. R., Roberge, P. R., Reichert, D. L. and Dawson, J. L. (1996), STP 1277. Electrochemical Noise Measurement for Corrosion Applications, ASTM International. Edited by J. Kearns et al. 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959. doi:

Knapen, E. and Van Gemert, D. (2009), ‘Cement hydration and microstructure formation in the presence of water-soluble polymers’, Cement and Concrete Research. 39:6–13. doi:

Legat, A., Leban, M. and Bajt, Ž. (2004), ‘Corrosion processes of steel in concrete characterized by means of electrochemical noise’, Electrochimica Acta. 49:2741–2751. doi:

León-Martínez, F. M., Rodríguez-Ramírez, J., Medina-Torres, L. L., Méndez Lagunas, L. L. and Bernad-Bernad, M. J. (2011), ‘Effects of drying conditions on the rheological properties of reconstituted mucilage solutions (Opuntia ficus-indica)’, Carbohydrate Polymers. 84:439–445. doi:

León-Martínez, F. M., Cano-Barrita, P. F. de J., Lagunez-Rivera, L. and Medina-Torres, L. (2014), ‘Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement based materials’, Construction and Building Materials. 53:190–202. doi:

León-Martínez, F. M., Méndez-Lagunas, L. L. and Rodríguez-Ramírez, J. (2010), ‘Spray drying of nopal mucilage (Opuntia ficus-indica): Effects on powder properties and characterization’, Carbohydrate Polymers. 81(4):864–870. doi:

Martinez-Molina, W., Torres-Acosta, A., Hernández-Leos, R., Alonso-Guzman, E., Mendoza-Pérez, I. and Martinez-Peña, I. (2015), ‘The inhibitive properties of Nopal slime on the corrosion of steel in chloride-contaminated mortar’, Anti-Corrosion Methods and Materials. 63(1):65–71. doi:

Morozov, Y., Castela, A. S., Dias, A. P. S. and Montemor, M. F. (2013), ‘Chloride-induced corrosion behavior of reinforcing steel in spent fluid cracking catalyst modified mortars’, Cement and Concrete Research. 47:1–7. doi:

Morris, W., Vico, A., Vazquez, M. and De Sanchez, S. R. (2002), ‘Corrosion of reinforcing steel evaluated by means of concrete resistivity measurements’, Corrosion Science. 44(1):81–99. doi:

Pech-Canul, M. A. and Castro, P. (2002), ‘Corrosion measurements of steel reinforcement in concrete exposed to a tropical marine atmosphere’, Cement and Concrete Research. 32(3):491–498. doi:

Pérez-Quiroz, J.T., Terán, J., Herrera, M.J., Martínez, M. and Genescá, J. (2008), ‘Assessment of stainless steel reinforcement for concrete structures rehabilitation’, Journal of Constructional Steel Research. 64:1317–1324. doi:

Peschard, A., Govin, A., Grosseau, P., Guilhot, B. and Guyonnet, R. (2004), ‘Effect of polysaccharides on the hydration of cement paste at early ages’, Cement and Concrete Research. 34:2153–2158. doi:

Poursaee, A. (2010), ‘Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern-Geary constant of reinforcing steel in concrete’, Cement and Concrete Research. 40(9):1451–1458. doi:

Rahmani, E., Dehestani, M., Beygi, M. H A, Allahyari, H. and Nikbin, I. M. (2013), ‘On the mechanical properties of concrete containing waste PET particles’, Construction and Building Materials. 47:1302–1308. doi:

Ramírez-Arellanes, S., Cano-Barrita, P. F. de J., Julián-Caballero, F. and Gómez-Yañez, C. (2012), ‘Propiedades de durabilidad en concreto y análisis microestructural en pastas de cemento con adición de mucílago de nopal como aditivo natural’, Materiales de Construcción. 62(307):327–341. doi:

Sáenz, C., Sepúlveda, E. and Matsuhiro, B. (2004), ‘Opuntia spp mucilage’s: A functional component with industrial perspectives’, Journal of Arid Environments. 57:275–290. doi:

Torres-Acosta, A. A. (2007), ‘Opuntia-Ficus-Indica (Nopal) mucilage as a steel corrosion inhibitor in alkaline media’, Journal of Applied Electrochemistry. 37(7):835–841. doi:

Torres-Acosta, A. A. and Martínez-Madrid, M. (2005), ‘Mortar improvements from Opuntia Ficus Indica (Nopal) and Aloe Vera Additions’, Inter American Conference on Non-Conventional Materials and Technologies in Ecological and Sustainable Construction. IAC-NOCMAT, Rio de Janeiro (Brazil), pp. 655-664.

Valipour, M., Shekarchi, M. and Ghods, P. (2014), ‘Comparative studies of experimental and numerical techniques in measurement of corrosion rate and time-to-corrosion-initiation of rebar in concrete in marine environments’, Cement and Concrete Composites. 48:98–107. doi:

Zhang, H., Feng, P., Li, L. and Wang, W. (2019), ‘Effects of starch-type polysaccharide on cement hydration and its mechanism’, Thermochimica Acta. 678:1-9. doi:

How to Cite
Díaz Blanco, Y., Menchaca Campos, E. C., Rocabruno Valdés, C. I., & Uruchurtu Chavarín, J. (2019). Natural additive (nopal mucilage) on the electrochemical properties of concrete reinforcing steel. Revista ALCONPAT, 9(3), 260 - 276.
Basic Research