Experimental evaluation of colored HSC column in fire conditions

  • C. Britez Department of Civil Construction Engineering, Universidade de São Paulo, São Paulo, PhD Engenharia.
  • P. Castro-Borges Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6 Antigua Carretera a Progreso, C.P. 97310, Mérida, Yucatán, México
  • A. Berto IPT. São Paulo, SP, Brasil
  • P. Helene Universidad de São Paulo, USP & PhD Engenharia

Abstract

ABSTRACT

In recent times it has been common to associate high-strength concrete with a greater susceptibility to explosive type spalling, when subjected to high temperatures. In part, this doubt is a result of some experimental programs that are carried out on small unreinforced concrete samples (specimens), which could substantially influence the structural concrete behavior in fire conditions. This paper presents an experimental program, carried out in Brazil on a high strength colored reinforced concrete column (HSCC), eight years-old, fc,8years = 140MPa, basalt coarse aggregate, cross section of 700mm x 700mm, tested under no load and with three faces exposed to standard fire curve ISO 834 for 180min (3h). The results demonstrated, in this case, that HSCC maintained integrity under experimental fire and that the iron oxide pigments can work as an excellent natural thermometer, contributing to the evaluation of the structure post-fire simulation.

Keywords: High-strength concrete; fire resistance; colored concrete; column in fire; iron oxide pigment.

 

RESUMEN

Ha sido común asociar el concreto de alta resistencia con una mayor susceptibilidad al desprendimiento por explosión (spalling) cuando se le somete a altas temperaturas. Esta duda se debe en parte a los resultados de algunos programas experimentales que se han llevado a cabo en pequeñas probetas de concreto simple sin refuerzo, lo que puede influir sustancialmente en el comportamiento del concreto en situación de incendio. Este artículo presenta un programa experimental en Brasil donde un pilar de concreto armado colorido de alta resistencia (HCAR), con ocho años de edad, fc,8años = 140MPa, árido grueso basáltico, sección cuadrada de 700mm x 700mm, fue ensayado sin carga y con tres lados expuestos al fuego (curva ISO 834) durante 180min (3h). Los resultados demostraron en este caso que el HCAR se mantuvo íntegro y que los pigmentos de óxido de hierro pueden trabajar como excelente termómetro natural, contribuyendo en la evaluación de la estructura después de la simulación de incendio.

Palabras Clave: Concreto de alta resistencia; resistencia al fuego; concreto colorido; pilar sometido al fuego; pigmento de óxido de hierro.

 

Downloads

Download data is not yet available.

References

Abrams, M. S. (1971), Compressive strength of concrete at temperatures to 1600F. ACI Special Publication 25-2. Detroit : American Concrete Institute, 1971. p.33-58.

Ali, F. A., O’Connor, D., Abu-Tair, A. (2001), Explosive spalling of high-strength concrete columns in fire. Magazine of Concrete Research, v. 53, n. 3, p. 197-204, Jun. 2001.

Ali, F. (2002), Is high strength concrete more susceptive to explosive spalling than normal strength concrete in fire? Fire and Materials, n.26, p. 127-130, 2002.

American Concrete Institute. ACI 216R-89 (2001), Guide for determining the fire endurance of concrete elements. Farmington Hills, Michigan, 1989. 48 p. Reapproved 2001.

Britez, C. A. (2011), Avaliação de pilares de concreto armado colorido de alta resistência, submetidos a elevadas temperaturas. São Paulo: USP, 2011. 252 f. Tese (Doutorado em Engenharia), Escola Politécnica, Universidade de São Paulo, São Paulo, 2011.

Cabrita Neves, I., Rodrigues, J. P. C., Loureiro, A. P. (1996), Mechanical properties of reinforcing and prestressing steels after heating. Journal of Materials in Civil Engineering, p.189-194, Nov. 1996.

European Committee for Standardization. Eurocode 2: design of concrete structures: part 1-2: general rules: structural fire design. prEN 1992-1-2. Brussels, Belgium, 2003. 106 p.

Fédération Internationale du Béton (fib). (2007), Fire design of concrete structures – materials, structures and modeling – State-of-art report. Lausanne, fib 2007. 97p. (Bulletin d’information; 38).

Hartmann, C., Helene, P. (2003), “HPCC in Brazilian office towerâ€. Concrete International, v.25, n.12, p. 64-68, Dec. 2003.

International Code Council. International Building Code. New York: ICC, 2009. 704 p.

Jacob, C. J. Bureau de Recherche Géologiques et Minières. Synthesis of wollastonite from natural materials without fusion. USA. US 3966884. 20 jun. 1974, 29 jun. 1976. United States Patent, 1976. Disponível em: <http://www.freepatentsonline.com/3966884.pdf> Acesso em: 25 nov.2010.

Khoury, G. A. (2000), Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, New York, v. 2, n. 4, p. 429–447, 2000.

Kodur, V.K.R.; Sultan, M.A. (1998), Structural behavior of high strength concrete columns exposed to fire. Ottawa, Ontário, Canadá: IRC/NRC, 1998. Report NRCC-41736.

Kodur, V.K.R. (2000), Experimental studies on the fire endurance of high-strength concrete columns. Canada : IRC/NRC, 2000. 146p. (NCR-CNRC Intemal Report 819).

Kodur, V.K.R. (2005), Guidelines for fire resistance design of high-strength concrete columns. Ottawa, Ontário, Canadá: IRC/NRC, 2005. (Report NRCC-47729).

Kottek, M. et al. (2006), World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, v. 15, n. 3, p. 259-263, 2006.

Morita, T. (2001) An experimental study on improvement of spalling behavior of high-strength concrete elements under fire attack. J. Struct. Constr. Eng., AIJ, n.544, p. 171-178, June, 2001.

Morita, T. et al. (2002), An estimation method for fire resistance of reinforced concrete elements considering spalling. Proceedings of the 1st Fib Congress. 2002. p. 119-128.

Neville, A. M. (1981), Properties of concrete. 3rd ed. London; Marshfield, Mass.: Pitman, 1981. 779p.

Suprenant, B. (1983), Evaluating fire-damaged concrete: concrete and reinforcing steel properties can be compromised at elevated temperatures. Fire Safety of Concrete Structures, ACI SP-80. Michigan: American Concrete Institute, 1983.

Phan, L.T. (1996), Fire performance of high-strength concrete: a report of the state-of-the-art. In: BUILDING and fire research laboratory. Gaithersburg: National Institute of Standard and Technology, 1996. NISTIR 5934.

Phan, L. T., Carino, N. J. (1998), Review of mechanical properties of HSC at elevated temperature. Journal of Materials in Civil Engineering, New York, v. 10, n. 1, p. 58–64, Feb. 1998.

Purkiss, J. A. (1996), Fire safety engineering design of structures. Oxford : Butterworth-Heinemann, 1996. 369p.

Rosenqvist, T. (2004), Principles of extractive metallurgy. 2nd ed. Trondheim : Tapir Academic Press, c2004. 506p.

São Paulo (Estado). Secretaria de Estado dos Negócios da Segurança Pública. Polícia Militar. Corpo de Bombeiros. Instrução técnica n. 008/2010: resistência ao fogo dos elementos de construção. São Paulo, 2011. 11 p.

Published
2013-01-30
How to Cite
Britez, C., Castro-Borges, P., Berto, A., & Helene, P. (2013). Experimental evaluation of colored HSC column in fire conditions. Revista ALCONPAT, 3(1), 39 - 54. https://doi.org/10.21041/ra.v3i1.42
Section
Study Case