Specimen size effect on the durability indexes determination for cement-based materials

Rebeca Visairo-Méndez, Andrés Antonio Torres-Acosta, Roberto Alvarado-Cárdenas

Abstract


In this project is required to determine if there is any result variation in durability indexes due to size effect in sizes of mortar specimens. Cubes 5 x 5 cm, 5 x 10 cm and 10 x 20 cm cylinders for each mortar type were considered. It was found that in certain indexes (WER, TVC, and CS) results did not depend on specimen´s geometry. Nonetheless, UPV index result presented differences up to 17.5 % between the cubes and the 10 x 20 cm cylinders. εeff index result showed an interesting difference between the cubes and the 5 x 10 cm cylinders used in full length. Therefore, it is recommended to restrict the height of the specimen to a standard value


Keywords


mortar; durability; size; performance

References


ASTM International. (1997), ASTM C642 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. https://doi.org/10.1520/C0642-97

ASTM International. (2002), C109/C109M Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in, or [50-mm] Cube Specimens). https://doi.org/10.1520/C0109_C0109M-02

ASTM International. (2002), ASTM C597 Standard Test Method for Pulse Velocity Through Concrete. https://doi.org/10.1520/C0597-02

ASTM International. (2003), ASTM C 33 Standard Specification for Concrete Aggretates. https://doi.org/10.1520/C0033_C0033M-18

ASTM International. (2004), ASTM C1585 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. https://doi.org/10.1520/C1585-04

Bazant, Z. P. (2000). Size effect. International Journal of Solids and Structures, 37(1-2), 69-80. https://doi.org/10.1016/S0020-7683(99)00077-3

Bazant, Z. P., Planas, J. (1997), “Fracture and Size Effect in Concrete and Other Quasibrittle Materials” CRC press. Florida, United States of America. https://doi.org/10.1201/9780203756799

Calado, C., Camoes, A., Monteiro, E., Helene, P., Barkokébas Jr., B. (2015). Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments. Materials. 8:1459-1481. https://doi.org/10.3390/ma8041459

Helene, P., Pereira, F. (Ed.). (2003), “Manual de Rehabilitación de Estructuras de Hormigón. Reparación, Refuerzo y Protección”. CYTED XV: F Corrosión/impacto ambiental sobre materiales: Reparación, refuerzo y protección de estructuras de hormigón, Construction Chemicals, Degussa, Sao Paulo, Brazil.

Medeiros-Junior, R. A., Munhoz, G. S., Medeiros, M. H. (2019), Correlations between water absorption, electrical resistivity and compressive strenght of concrete with different contents of pozzolan. Latin-American Journal of Quality Control, Pathology and Construction Recovery. 9(2):152-166. http://dx.doi.org/10.21041/ra.v9i2.335

Mejía, M., Torres, A. A., del Valle, A., Vázquez, V. E., Trueba, C., Martínez, M., Lomelí, M. G. (2018), Publicación Técnica 513 - Caracterización física y mecánica por desempeño de morteros de reparación, para su uso en la infraestructura del transporte de la SCT. Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte, Coordinación de Ingeniería Vehicular e Integración Estructural.

Mendes, S. E., Oliveira, R. L., Cremonez, C., Pereira, E., Pereira, E., Medeiros-Junior, R. A. (2018), Electrical resistivity as a durability parameter for concrete design: Experimental data versus estimation by mathematical model. Construction and Building Materials. 192:610-620. https://doi.org/10.1016/j.conbuildmat.2018.10.145

Mendoza-Rangel, J. M., Flores-Jarquín, J. M., De Los Santos, E. U., Garcés Terradillos, P. (2016), Durability of sustainable repair mortars exposed to industrial environments. Latin-American Journal of Quality Control, Pathology and Construction Recovery. 6(1):41-51. http://dx.doi.org/10.21041/ra.v6i1.114

ONNCCE (1999), NMX-C-414-ONNCCE-1999 Industria de la Construcción - Cementos Hidráulicos - Especificaciones y Métodos de Prueba.

ONNCCE (2016), NMX-C-514-ONNCCE-2016 Industria de la Construcción - Resistividad Eléctrica del Concreto Hidráulico - Especificaciones y métodos de ensayo.

Shi, X., Xie, N., Fortune, K., Gong, J. (2012), Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials. 30:125-138. https://doi.org/10.1016/j.conbuildmat.2011.12.038

Solís, R. G., Moreno, E. I., Arjona, E. (2012), Resistencia de concreto con agregado de alta absorción y baja relación a/c. Latin-American Journal of Quality Control, Pathology and Construction Recovery. 2(1):21-28. http://dx.doi.org/10.21041/ra.v2i1.23

Torres, A. A., Castro, P. (2013), Corrosion-Induced Cracking of Concrete Elements Exposed to a Natural Marine Environment for Five Years. Corrosion Engineering Section. 69(11):1122-1131. http://dx.doi.org/10.5006/0844

Torres, A. A., Castro-Borges, P. (2018), La filosofía para obtener obras de concreto durables. IC Ingeniería Civil – Estructuras. I(586):12-15.

Torres, A., Fabela, M., Vázquez, D., Hernández, J., Martínez, M., Muñoz, A. (2002), Publicación Técnica 204 - Cambios en la rigidez y resistencia a la flexión de vigas de concreto dañadas por corrosión del refuerzo. Secretaría de Comunicaciones y Transportes, Instituto Mexicano del Transporte, Coordinación de Ingeniería Vehícular e Integridad Estructural.

Troconis de Rincón, O., Romero De Carruyo, A., Andrade, C., Helene, P., Díaz, I. (Ed.). (1997), “Manual de inspección, evaluación y diagnóstico de corrosión en estructuras de hormigón armado”. CYTED, XV: B Corrosión/impacto ambiental sobre materiales: Durabilidad de la armadura, Río de Janeiro, Brazil.




DOI: http://dx.doi.org/10.21041/ra.v9i3.381

Refbacks

  • There are currently no refbacks.


 

Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017