Fatigue service life of longitudinal reinforcement bars of reinforced concrete beams based on the real heavy traffic
Abstract
This paper analyzes the fatigue service life of longitudinal reinforcement in reinforced concrete bridge beams by considering the actual number of heavy vehicles from 2 to 6 axes in a railway in the state of São Paulo, Brazil. Theoretical models with a structural system composed by bridges with two simply supported beams and spans of 10, 15 and 20 meters are used. Ftool is used to determine the internal stretches, and the cumulative damage method in the estimation of the fatigue life. At the end, it is verified that the fatigue service life of the longitudinal reinforcement varies according to the size of the span, and in the three analyzed bridges the fatigue service life is less than 30 years.
Downloads
References
Alencar, G., et al. (2016), “Análise Dinâmica e Verificação à Fadiga dos Viadutos de Acesso da Nova Ponte Ferroviária Sobre o Rio Sado†in: Iberian Latin American Congress in Computational Methods in Engineering, ABMEC, BrasÃlia (Brasil), pp. 1-16.
Almeida, E. P., Fortes, A. S. (2016), “Análise da Carga Móvel em Pontes e Viadutos Rodoviários†in: Congresso Brasileiro de Pontes e Estruturas, ABECE, Rio de Janeiro (Brasil), pp. 1-10.
American Concrete Institute. (1997). ACI 215R-74: Considerations for Design of Concrete Structures Subjected to Fatigue Loading. Michigan.
Associação Brasileira de Normas Técnicas. (2013), NBR 7188: Carga Móvel Rodoviária e de Pedestres em Pontes, Viadutos, Passarelas e outras estruturas. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2014), NBR 6118: Projetos de estruturas de concreto – Procedimento. Rio de Janeiro.
Baroni, H. J. M. et al. (2009), “Vida Útil de Fadiga de Elementos Estruturais de Concreto Armado de Pontes Rodoviária†in: Congresso Brasileiro do Concreto, IBRACON, Curitiba (Brasil), pp. 1-16.
Baroni, H. J. M. (2010), “Simulação da Vida Útil do Concreto em Vigas de Tabuleiro de Pontes em Função do Fluxo de VeÃculos Pesadosâ€. Tese de Doutorado, Universidade Federal do Rio Grande do Sul, p. 284;
Bastidas-Arteaga, E. (2018), Reliability of Reinforced Concrete Structures Subjected to Corrosion-Fatigue and Climate Change. International Journal of Concrete Structures and Materials. 12(1):1-13. https://doi.org/10.1186/s40069-018-0235-x
Branco, C. M. et al. (1999), “Fadiga de Estruturas Soldadasâ€, Editora Fundação Calouste Gulbenkian, Lisboa, Portugal.
Branco, F., Paulo, P. (2012), O projecto de pontes para vidas superiores a 100 anos. Revista ALCONPAT, 2(1), 1 - 9. doi: http://dx.doi.org/10.21041/ra.v2i1.20.
Branco, F. A. et al. BoletÃn Técnico: Vida útil em la construiccÃon civil. ALCONPAT International. 2013. DisponÃvel em: <http://alconpat.org.br/wp-content/uploads/2012/09/B4-Vida-%C3%9Atil-na-Constru%C3%A7%C3%A3o-Civil.pdf>. Access in 03 Apr. 2019.
Braz, D. et al. (2018). “Otimização da proporção entre balanço e vão de pontes de concreto armado de duas longarinas com base na fadiga das armaduras†in: Congresso Brasileiro de Pontes e Estruturas, ABECE, Rio de Janeiro (Brasil), pp. 1-10.
Camargo, M. V. et al. (2018), “Análise comparativa entre comboios e o carregamento normativo da NBR 7188/2013 em tabuleiros de pontes rodoviárias de concreto†in: Congresso Brasileiro de Pontes e Estruturas, ABECE, Rio de Janeiro (Brasil), pp. 1-10.
Carvalho, R. C. (2017), Introdução ao estudo de pontes. Universidade Federal de São Carlos.
CCR RODOANEL. “Sobre a CCR RodoAnelâ€. DisponÃvel em: <http://www.rodoaneloeste.com.br/institucional/>. Access in 18 Ago. 2018.
Confederação Nacional do Transporte (2018), “Boletim EstatÃstico - CNT - Maio 2018â€. BrasÃlia: CNT. DisponÃvel em: < http://www.cnt.org.br/Boletim/boletim-estatistico-cnt>. Access in 18 Jul. 2018.
Deng, L. et al. (2016), State-of-the-art review on the causes and mechanisms of bridge collapse. Journal of Performance of Constructed Facilities, ASCE, 30(2):1-13. https://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0000731
Deng, L., Yan, W. (2018), Vehicle Weight Limits and Overload Permit Checking Considering the Cumulative Fatigue Damage of Bridges. Journal of Bridge Engineering, 23(7):1-8. https://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0001267
Departamento Nacional de Estradas de Rodagem (DNER) (1996), Manual de Projeto de Obras-de-Arte Especias. Ministério dos Transportes. Rio de Janeiro. DisponÃvel em: < http://ipr.dnit.gov.br/normas-e-manuais/manuais/documentos/698_manual_de_projeto_de_obras_de_arte_especiais.pdf>. Access in 13 Apr. 2019.
Departamento Nacional de Infraestrutura de Transportes (2017), Base de Dados das OAE – BDOAE. 2017. DisponÃvel em: < http://servicos.dnit.gov.br/dnitcloud/index.php/s/gkQB3SNPH7cwF5F>. Access in 29 Oct. 2018.
European Standard. (2002), EN1991-2, Eurocode 1 - Actions on structures - Part 2: Traffic Loads on Bridges. European Committee for Standardization, Brussels.
Freitas, M. J. S. (2014), “Verificação de Segurança à Fadiga de Pontes Rodoviáriasâ€. Dissertação de Mestrado, Universidade do Porto, p. 161.
FTOOL (2018), “A Graphical-Interactive Program for Teaching Structural Behaviorâ€. DisponÃvel em: < https://www.ftool.com.br/Ftool/>. Access in 13 Sep. 2018.
Habeeba, A et al. (2015), Fatigue Evaluation of Reinforced Concrete Highway Bridge. International Journal of Innovative Research in Science, Engineering and Technology, 4(4):2561-2569. http://www.rroij.com/open-access/fatigue-evaluation-of-reinforced-concretehighway-bridge.pdf
Han, W. et al. (2015), Characteristics and Dynamic Impact of Overloaded Extra Heavy Trucks on Typical Highway Bridges. Journal of Bridge Engineering, 20(2):1-11. http://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0000666
Han, W. et al. (2017), Dynamic Impact of Heavy Traffic Load on Typical T-Beam Bridges Based on WIM Data. Journal of Performance of Constructed Facilities, 31(3):1-14. http://ascelibrary.org/doi/10.1061/%28ASCE%29CF.1943-5509.0000991
Liu, F., Zhou, J. (2018), Experimental Research on Fatigue Damage of Reinforced Concrete Rectangular Beam. KSCE Journal of Civil Engineering, 22(9):3512–3523. https://link.springer.com/article/10.1007/s12205-018-1767-y
Maggi, P. L. O. (2004), “Comportamento de Pavimentos de Concreto Estruturalmente Armados sob Carregamentos Estáticos e Repetidosâ€. Tese de Doutorado, Universidade de São Paulo, p. 219.
Mota, H. C. et al. (2018), “Estimativa de Esforços Extremos em Pontes Para Modelo Dinâmico de Cargas Móveis No Brasil†in: Congresso Brasileiro de Pontes e Estruturas, ABECE, Rio de Janeiro (Brasil), pp. 1-10.
Nowak, M., Fischer, O. (2016), Traffic Parameter Sensitivity in the Development of Site-specific Load Models. Procedia Engineering, 156:296–303. https://doi.org/10.1016/j.proeng.2016.08.300
Pereira, H. F. S. G. (2006), “Comportamento à Fadiga de Componentes Estruturais Sob a Acção de Solicitações de Amplitude Variávelâ€. Dissertação de Mestrado, Universidade do Porto, p. 292.
Pimentel, M. et al. (2008), Fatigue life of short-span reinforced concrete railway bridges. Structural Concrete, 9(4): 215-222. https://www.icevirtuallibrary.com/doi/abs/10.1680/stco.2008.9.4.215
Pircher, M. et al. (2011), Damage due to heavy traffic on three RC road bridges. Engineering Structures, 33(12): 3755–3761. https://doi.org/10.1016/j.engstruct.2011.08.012
Ray, S., Kishen, J. M. (2014). Analysis of fatigue crack growth in reinforced concrete beams. Materials and Structures. 47(1):183-198. https://link.springer.com/article/10.1617/s11527-013-0054-0
Rossigali, C. E. et al. (2015), Towards actual Brazilian traffic load models for short span highway bridges. Revista IBRACON de Estruturas e Materiais, 8(2):124-139. http://dx.doi.org/10.1590/S1983-41952015000200005
Ruiz, M. F. et al. (2015), Shear strength of concrete members without transverse reinforcement: A mechanical approach to consistently account for size and strain effects. Engineering Structures, 99, 360-372. https://doi.org/10.1016/j.engstruct.2015.05.007
Santos, L. F., Pfeil, M. S. (2014), Desenvolvimento de Modelo de Cargas Móveis para Verificação de Fadiga em Pontes Rodoviárias. Engenharia Estudo e Pesquisa, 14(1):40-47. http://www.revistaeep.com/imagens/volume14_01/cap05.pdf
Schläfli, M., Brühwiler, EugEen. (1998), Fatigue of existing reinforced concrete bridge deck slabs. Engineering Structures. 20. 991-998. https://doi.org/10.1016/S0141-0296(97)00194-6.
Schneider, S., Marx, S. (2018), Design of railway bridges for dynamic loads due to high-speed traffic. Engineering Structures, 174(1):396–406. https://doi.org/10.1016/j.engstruct.2018.07.030
Toledo, R. L. S. de. (2011), “Avaliação da vida útil à fadiga em ponte mista aço-concreto considerando o espectro de veÃculos reaisâ€. Dissertação, Universidade Federal do Rio de Janeiro, p. 101.
Wang, C-S. et al. (2013), “Fatigue Safety Monitoring and Fatigue Life Evaluation for Existing Concrete Bridges†in: International Conference on Fracture, ICF, Beijing (China), pp. 1-9
Wang, C-S. et al. (2015), Fatigue Service Life Evaluation of Existing Steel and Concrete Bridges. Advanced Steel Construction, 11(3):305-321. http://ascjournal.com/down/vol11no3/vol11no3_5.pdf
Xin, Q. et al. (2017), Fatigue Behavior of Prestressed Concrete Beams under Overload. Journal of Engineering Science and Technology Review, 10(4):124-131. http://www.jestr.org/downloads/Volume10Issue4/fulltext171042017.pdf
Zanuy, C. et al. (2011), Transverse fatigue behaviour of lightly reinforced concrete bridge decks. Engineering Structures, 33(10): 2839–2849. https://doi.org/10.1016/j.engstruct.2011.06.008
Zhang, Y., Xin, X., Cui, X. (2012), Updating Fatigue Damage Coefficient in Railway Bridge Design Code in China. Journal of Bridge Engineering, 17 (5): 788-793. https://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0000310
Zhou, Y., Chen, S. (2018), Investigation of the Live-Load Effects on Long-Span Bridges under Traffic Flows. Journal of Bridge Engineering, 23(5):1–18. https://ascelibrary.org/doi/10.1061/%28ASCE%29BE.1943-5592.0001214
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.