The usage of infrared thermography to study thermal performance of walls: a bibliographic review
Abstract
This article aims to present the influence of infrared thermography on masonry walls to detect pathological manifestations. A systematic review was carried out through research with automatic search and snow-balling, selection and sifting of articles to restrict the articles to the desired theme. After this, it was studied infrared thermography in the pathological manifestations, the thermal properties and their behavior, thermal bridges, temperature difference and air infiltrations. In general, some care must be taken during the execution of experiments and measurements. It has also been shown that infrared thermography is a simple technique and needs to be used.
Downloads
References
ABNT - Associação brasileira de normas técnicas. (2013a). “NBR 15575: Edificações habitacionais – Desempenho Parte 1 – 6â€. Rio de Janeiro.
ABNT - Associação brasileira de normas técnicas. (2013b). “NBR 15572: Ensaio não destrutivos – Termografia Infravermelha – Guia para inspeção de equipamentos elétricos e mecánicosâ€. Rio de Janeiro.
ABNT - Associação brasileira de normas técnicas. (2005). “NBR 15220: Desempenho térmico das edificações Parte 1 – 5â€. Rio de Janeiro.
ABNT - Associação brasileira de normas técnicas. (2010). “NBR 15866: Ensaios não destrutivos – Termografia - Metodologia de avaliação de temperatura de trabalho de equipamentos em sistemas elétricosâ€. Rio de Janeiro.
ABNT - Associação brasileira de normas técnicas. (2009). “NBR 15763: Ensaios não destrutivos – Termografia – Critérios de definição de periodicidade de inspeção em sistemas elétricos de potencia. Rio de Janeiro.
Albatici, R., Passerini, F., Tonelli, A. M., Gialanella, S. (2013), “Assessment of the thermal emissivity value of building materials using an infrared thermovision technique emissometerâ€, Energy and buildings, V.66, p.33-40. https://doi.org/10.1016/j.enbuild.2013.07.004
Albatici, R., Tonelli, A. M. (2010), “Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on siteâ€, Energy and Buildings, V.42, No.11, p.2177-2183. https://doi.org/10.1016/j.enbuild.2010.07.010
Asdrubali, F., Baldinelli, G., Bianchi, G. (2012), “A quantitative methodology to evaluate thermal bridges in buildingsâ€, Applied Energy, V.97, p.365-373. https://doi.org/10.1016/j.apenergy.2011.12.054
ASTM. (2013a). “C1046-95: Standard practice for in-situ measurement of heat flux and temperature on building envelope componentsâ€, (West Conshohocken, United States: ASTM International), p. 10. http://dx.doi.org/10.1520/C1046
ASTM. (2013b). “C1155-95: Standard practice for determining thermal resistance of building envelope components from the in-situ dataâ€, (West Conshohocken, United States: ASTM International), p. 8. http://dx.doi.org/10.1520/C1155-95R13
ASTM. (2015a). “C1060-11a: Standard practice for thermographic inspection of insulation installations in envelope cavities of frame buildingsâ€, (West Conshohocken, United States: ASTM International), p. 7. http://dx.doi.org/10.1520/C1060-11AR15
ASTM. (2015b). “C1153-10: Standard practice for location of wet insulation in roofing systems using infrared imagingâ€, (West Conshohocken, United States: ASTM International), p. 6.
http://dx.doi.org/10.1520/C1153-10R15
Aversa, P., Palumbo, D., Donatelli, A., Tamborrino, R., Ancona, F., Galietti, U., Luprano, V. A. M. (2017), “Infrared thermography for the investigation of dynamic thermal behaviour of opaque building elements: Comparison between empty and filled with hemp fibres prototype wallsâ€, Energy and Buildings, V.152, p.264-272. https://doi.org/10.1016/j.enbuild.2017.07.055
Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., Jayakumar, T. (2013), “Infrared thermography for condition monitoring – A reviewâ€, Infrared Physics & Technology, V.60, p.35-55. https://doi.org/10.1016/j.infrared.2013.03.006
Barr, E. S. (1961), “The infrared pioneers—I. Sir William Herschelâ€. Infrared Physics, v. 1, p. 1-2.
Bianchi, F., Pisello A. L., Baldinelli G., Asdrubali, F. (2014), “Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setupâ€, Sustainability, V. 10, No. 6, p.7107-7120. https://doi.org/10.3390/su6107107
Brás, A., Gonçalves, F., Faustino, P. (2014), “Cork-based mortars for thermal bridges correction in a dwelling: Thermal performance and cost evaluationâ€, Energy and Buildings, V.72, p.296–308. https://doi.org/10.1016/j.enbuild.2013.12.022
Cani, B. F., Marinoski, D. L., Lamberts, R. (2012), “Aplicação da termografia infravermelha para verificação da temperatura em telhas cerâmicas com diferentes teores de umidade e condições de limpeza da superficie†in: XIV Encontro Nacional de Tecnologia do Ambiente ConstruÃdo - XIV ENTAC, JuÃz de Fora: MG (BR).
Castro, J. L. B. B. (2010), “Quantificação dos coeficientes de transmissão térmica lineares - pontes térmicasâ€, Dissertação de Mestrado – Faculdade de Engenharia da Universidade do Porto, Portugal, p.314.
Ciocia, C., Marinetti, S. (2012). “In-situ emissivity measurement of construction materialsâ€, in: 11th International Conference on Quantitative InfraRed Thermography, Napoly: Italy.
Clark, M., McCann, D., Forde, M. (2003), “Application of infrared thermography to the nondestructive testing of concrete and masonry bridgesâ€. NDT&E International, V.36, No. 4, pp. 265- 275.
Danielski, I., Fröling, M. (2015). “Diagnosis of buildings’ thermal performance - a quantitative method using thermography under non-steady state heat flowâ€, Energy Procedia, V.83, p.320-329. https://doi.org/10.1016/j.egypro.2015.12.186
Datcu, S., Ibos, L., Candau, Y., Mattei¨, S. (2005), “Improvement of building wall surface temperature measurements by infrared thermographyâ€, Infrared Physics & Technology, V. 46, p. 451-467. https://doi.org/10.1016/j.infrared.2005.01.001
Decreto-Lei Nº 80/2006. (4 de Abril de 2006). Regulamento das caracterÃsticas do Comportamento Térmico dos EdifÃcios (RCCTE).
Diao, R., Sun, L., Yang, F. (2018), “Thermal performance of building wall materials in villages and towns in hot summer and cold winter zone in Chinaâ€, Applied Thermal Engineering, V. 128, p. 517-530. https://doi.org/10.1016/j.applthermaleng.2017.08.159
Directive 2010/31/EU Of The European Parliament and of the Council. (2010). DisponÃvel em: < https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010L0031&from=IT> Acessado em: 13 de Junho de 2018.
Donatelli, A., Aversa, P., Luprano, V. A. M. (2016), “Set-up of an experimental procedure for the measurement of thermal transmittances via infrared thermography on lab-made prototype wallsâ€, Infrared Physics & Technology, V. 79, p. 135-143. https://doi.org/10.1016/j.infrared.2016.10.005
EIA. U.S. Energy information administration. (2018). DisponÃvel em: https://www.eia.gov/tools/faqs/faq.php?id=86&t=1. Acessado em: 15 de Junho de 2018.
EN. (1999), “13187: Thermal performance of buildings. Qualitative detection of thermal irregularities in building envelopes. Infrared methodâ€, (London, United Kingdom: British Standards Institution), p. 16. https://doi.org/10.3403/01569434U
FLIR-Forward Looking Infrared. (2017). “User’s manual FLIR Cx Series†(Wilsonville, United States: FLIR), p. 67.
Ghahramani, A., Castro, G., Karvigh, S. A., Becerik-Gerber, B. (2018), “Towards unsupervised learning of thermal comfort using infrared thermographyâ€, Applied Energy, V. 211, p. 41-49. https://doi.org/10.1016/j.apenergy.2017.11.021
Green Building Council Brasil. (2015), “O consumo de energia nas edificações do Brasilâ€. DisponÃvel em: http://www.gbcbrasil.org.br/detalhe-noticia.php?cod=119. Acesso em: 03 de julho de 2018.
Grinzato, E., Bison, P.G., Marinetti, S. (2002). “Monitoring of ancient buildings by the thermal methodâ€, Journal of Cultural Heritage, V.3, p. 21–29. https://doi.org/10.1016/S1296-2074(02)01159-7
Grinzato, E., Vavilov, V., Kauppinen, T. (1998). “Quantitative infrared thermography in buildingsâ€, Energy and Buildings, V.29, No.1, p. 1-9. https://doi.org/10.1016/S0378-7788(97)00039-X
ISO (2015), “6781-3: Performance of buildings -- Detection of heat, air and moisture irregularities in buildings by infrared methods -- Part 3: Qualifications of equipment operators, data analysts and report writersâ€, (Geneva, SuÃça: International Organization for Standardization), p. 18.
ISO (2008), “13790: Energy performance of buildings -- Calculation of energy use for space heating and coolingâ€, (Geneva, SuÃça: International Organization for Standardization), p. 167.
Jorge, L. F. A. (2011). “Determinação do coeficiente de transmissão térmica em paredes de edificiosâ€, Dissertação de Mestrado, Universidade da Beira Interior, Portugal, p. 112.
Kylili, A., Fokaides, P. A., Christou, P., Kalogirou, S. A. (2014). “Infrared thermography (IRT) applications for building diagnostics: A reviewâ€, Applied Energy, V.134, p.531-549. https://doi.org/10.1016/j.apenergy.2014.08.005
Lai, W. W., Lee, K., Poon, C. (2015). “Validation of size estimation of debonds in external wall’s composite finishes via passive Infrared thermography and a gradient algorithmâ€, Construction and Building Materials, V. 87, p. 113-124. https://doi.org/10.1016/j.conbuildmat.2015.03.032
Lerma, C., Barreira, E., Almeida, R. M. S. F. (2018). “A discussion concerning active infrared thermography in the evaluation of buildings air infiltrationâ€, Energy and Buildings, V. 168, p. 56-66. https://doi.org/10.1016/j.enbuild.2018.02.050
Lucchi, E. (2018). “Applications of the infrared thermography in the energy audit of buildings: A reviewâ€, Renewable and Sustainable Energy Reviews. v. 82, parte 3, p. 3077-3090. https://doi.org/10.1016/j.rser.2017.10.031
Maldague, X. (2001). “Infrared and Thermal testing: Nondestructive testing handbook. 3th ed, Columbus, OH: Patrick O. Moore, 2001.
Marino, B. M., Muñoz , N., Thomas, L. P. (2016). “Estimation of the surface thermal resistances and heat loss by conduction using thermographyâ€, Applied Thermal Engineering, V. 114, p. 1213-1221. https://doi.org/10.1016/j.applthermaleng.2016.12.033
Marinoski, D. L., Souza, G. T., Sangoi, J. M., Lamberts, R. (2010). “Utilização de imagens em infravermelho para análise térmica de componentes construtivosâ€, in: XIII Encontro Nacional de Tecnologia do Ambiente ConstruÃdo, Canela: Rio Grande do Sul (BR).
Marques, T. H.T., Chavatal, K. M. S. (2013). “A Review of the Brazilian NBR 15575 standard:applying the simulation and simplified methods for evaluating a social house thermal performanceâ€, in: Symposium on Simulation for Architecture and Urban Design, San Diego: Califórnia (EUA).
Meola, C. (2012), Infrared thermography: recent advances and future trends. Bentham Books, Italy, p.24-26. eISBN: 978-1-60805-143-4.
Milovanović, B., PeÄur, I. B., Å tirmer, N. (2016). “The methodology for defect quantification in concrete using ir thermographyâ€, Journal of civil engineering and management, V. 23, p. 573-582. https://doi.org/10.3846/13923730.2016.1210220
O’Grady, M, Lechowska, A. A., Harte, A. M. (2017b). “Infrared thermography technique as an in-situ method of assessing heat loss through thermal bridgingâ€, Energy and building, V.135, p. 20-32. https://doi.org/10.1016/j.enbuild.2016.11.039
O'Grady, M., Lechowska, A.A., Harte, A. M. (2017a). “Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography Techniqueâ€, Applied Energy, V.208, p. 1038-1052. https://doi.org/10.1016/j.apenergy.2017.09.047
Pei, C., Qiu, J., Liu, H., Chen, Z. (2016). “Simulation of surface cracks measurement in first walls by laser spot array thermographyâ€, Fusion Engineering and Desing, V.109-111, parte B, p. 1237-1241. https://doi.org/10.1016/j.fusengdes.2015.11.055
Porras-Amores, C, Mazzarrónb, F.R., Canas, I. (2013), “Using quantitative infrared thermography to determine indoor air temperatureâ€, Energy and Building, V.65, p.292-298. https://doi.org/10.1016/j.enbuild.2013.06.022
Rajic, N. (2002), “Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structuresâ€, Composite Structures, V. 58, p. 521-528. https://doi.org/10.1016/S0263-8223(02)00161-7
Robinson, A. J., Lesage, A. F. J., Reilly, A., Mcgranaghan, G., Byrne, G., O’hegarty, R., Kinnane, O. (2017), “A New Transient Method for Determining Thermal Properties of Wall Sectionsâ€, Energy and Buildings, V. 142, p. 139-146. https://doi.org/10.1016/j.enbuild.2017.02.029
Rocha, J. H. A., Póvoas, Y. V. (2017). “A termografia infravermelha como um ensaio não destrutivo para a inspeção de pontes de concreto armado: Revisão do estado da arteâ€, Revista ALCONPAT, V. 7, nº 3. http://dx.doi.org/10.21041/ra.v7i3.223
Savastano Junior, H., Pimentel, L. L. (2000). “Viabilidade do aproveitamento de resÃduos de fibras vegetais para fins de obtenção de material de construçãoâ€, Revista Brasileira de Engenharia AgrÃcola e Ambiental - Agriambi, V. 4, n. 1, p. 103-110. http://dx.doi.org/10.1590/S1415-43662000000100019
Silva, E. P., Cahino, J. E. M., Melo, A. B. (2012), “Avaliação do desempenho térmico de blocos EVAâ€, in: XIV Encontro Nacional de Tecnologia do Ambiente ConstruÃdo, JuÃz de Fora: Minas Gerais (BR).
Simões, I., Simões, N, Tadeu, A., Riachos, J. (2014), “Laboratory assessment of thermal transmittance of homogeneous building elements using infrared thermographyâ€, in: 12th International Conference on Quantitative InfraRed Thermography, Bordeaux: France.
Smith, R. A., Jones, F. E., Chasmar, R. P. (1958), The Detection and Measurement of Infrared Radiation, Oxford University Press.
Tanic, M., Stankovic, D., Nikolic, V., Nikolic, M., Kostic, D., Milojkovic, A., Spasic, S., Vatin, N. (2015). “Reducing Energy Consumption by Optimizing Thermal Losses and Measures of Energy Recovery in Preschoolsâ€, Procedia Engineering, v. 117, p. 919 – 932. https://doi.org/10.1016/j.proeng.2015.08.179
Viégas, D. J. A. (2015). “Utilização de termografia infravermelha em fachadas para verificação de descolamento de revestimentosâ€, Dissertação de Mestrado – Escola Politécnica da Universidade de Pernambuco, Recife, p. 164.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.