Correlations between water absorption, electrical resistivity and compressive strength of concrete with different contents of pozzolan
Abstract
This research confronts the following concrete properties: water absorptions (by immersion and capillarity), electrical resistivity and compressive strength. Concrete mixtures with two types of cement were tested. Results showed that concretes with higher content of pozzolan had higher resistivity and greater absorption by capillarity, for water/cement ratios lower than 0,60. This behavior is attributed to reduced pore diameters and microstructure densification. However, for water/cement ratio of 0,60, concrete with lower content of pozzolan presented higher absorption by capillarity. It was observed that the compressive strength and the electrical resistivity behaved inversely proportional to the water/cement ratio, and the absorption by immersion and capillarity are directly proportional to the water/cement ratio. Correlations with high determination coefficients were found between tests.
Downloads
References
Ait-Mokhtar, A., Belarbi, R., Benboudjema, F., Burlion, N., Capra, B., Carcasses, M., Colliat, J. B., Cussigh, F., Deby, F., Jacquemot, F., Larrard, T., Lataste, J. F., Bescop, P. L., Pierre, M., Poyet, S., Rougeau, P., Rougelot, T., Sellier, A., Yanez-Godoy, H. (2013), Experimental investigation of the variability of concrete durability properties. Cement and Concrete Research. 45:21-36. https://doi.org/10.1016/j.cemconres.2012.11.002
Andrade, C., D’andrea, R. (2011), La resistividad eléctrica como parámetro de control del hormigón y de su durabilidad, Revista ALCONPAT, 1(2), 93-101. DOI: http://dx.doi.org/10.21041/ra.v1i2.8
Asociación Española de Normalización (2014). UNE 83988-2: Durabilidad del hormigón. Métodos de ensayo. Determinación de la resistividad eléctrica. Parte 2: Método de las cuatro puntas o de Wenner. Madrid.
Associação Brasileira de Normas Técnicas (2015). NBR 5738: Concreto - Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2018). NBR 5739: Concreto - Ensaios de compressão de corpos-de-prova cilÃndricos. Rio de Janeiro, 2018.
Associação Brasileira de Normas Técnicas (2009). NBR 9778: Argamassa/concreto endurecidos - Determinação da absorção de água, Ãndice de vazios e massa especÃfica. Rio de Janeiro.
Associação Brasileira de Normas Técnicas (2012). NBR 9779: Argamassa e concreto endurecidos — Determinação da absorção de água por capilaridade. Rio de Janeiro.
Bem, D. H., Lima, D. P. B., Medeiros-Junior, R. A. (2018), Effect of chemical admixtures on concrete’s electrical resistivity. International Journal of Building Pathology and Adaptation. 36(2):174-187. https://doi.org/10.1108/IJBPA-11-2017-0058
Castro, A., Ferreira, F. (2016), Effect of particle packing in the durability of high performance concretes. IngenierÃa de Construcción. 31(2):91-104. http://dx.doi.org/10.4067/S0718-50732016000200003
Chen, C. T., Chang, J. J., Yeih, W. C. (2014), The effects of specimen parameters on the resistivity of concrete. Construction and Building Materials. 71:35-43. https://doi.org/10.1016/j.conbuildmat.2014.08.009
Comité Euro-International du Béton. (1989). CEB Bull 192: Diagnosis and assessment of concrete structures — state of the art report. Lausanne.
Dinakar, P., Babu, K. G., Santhanam, M. (2007), Corrosion behaviour of blended cements in low and medium strength concretes. Cement and Concrete Composites. 29(2):136-145. https://doi.org/10.1016/j.cemconcomp.2006.10.005
Gans, P. S. (2017), “Correlação entre a resistividade elétrica e a resistência à Compressão do concreto exposto a ciclos de molhagem e Secagem com cloretos e sulfatosâ€, Dissertação de Mestrado em Engenharia de Construção Civil, Universidade Federal do Paraná, Curitiba.
Hoppe Filho, J., Medeiros, M. H. F., Pereira, E., Helene, P., Isaia, G. C. (2013), High-Volume Fly Ash Concrete with and without Hydrated Lime: Chloride Diffusion Coefficient from Accelerated Test. Journal of Materials in Civil Engineering, 25(3):411-418. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000596
Hornbostel, K., Larsen, C. K., Geiker, M. R. (2013), Relationship between concrete resistivity and corrosion rate – A literature review. Cement and Concrete Composites. 39:60-72. https://doi.org/10.1016/j.cemconcomp.2013.03.019
Leung, H. Y., Kim, J., Nadeem, A., Jaganathan, J., Anwar, M. P. (2016), Sorptivity of self-compacting concrete containing fly ash and silica fume. Construction and Building Materials. 113:369-375. https://doi.org/10.1016/j.conbuildmat.2016.03.071
López, M., Castro, J. T. (2010), Efecto de las puzolanas naturales en la porosidad y conectividad de poros del hormigón con el tiempo. IngenierÃa de Construcción, 25(3):419-431. http://dx.doi.org/10.4067/S0718-50732010000300006
Lubeck, A., Gastaldini, A. L. G., Barin, D. S., Siqueira, H. C. (2012), Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cement and Concrete Composites. 34(3):392-399. https://doi.org/10.1016/j.cemconcomp.2011.11.017
Medeiros, M. H. F., Raisdorfer, J. W., Hoppe Filho, J., Medeiros-Junior, R. A. (2017), Partial replacement and addition of fly ash in Portland cement: influences on carbonation and alkaline reserve. Journal of Building Pathology and Rehabilitation. 2(4):1-9. https://doi.org/10.1007/s41024-017-0023-z
Medeiros-Junior, R. A., Lima, M. G. (2016), Electrical resistivity of unsaturated concrete using different types of cement. Construction and Building Materials. 107:11-16. https://doi.org/10.1016/j.conbuildmat.2015.12.168
Medeiros-Junior, R. A. Lima, M. G., Medeiros, M. H. F., Real, L. V. (2014), Investigação da resistência à compressão e da resistividade elétrica de concretos com diferentes tipos de cimento. Revista ALCONPAT, 4(2), 113-128. DOI: http://dx.doi.org/10.21041/ra.v4i2.21
Mehta, P. K., Monteiro, P. J. M. (2006), “Concrete – Microstructure, Properties and Materialsâ€. McGraw Hill, New York City, United States, cap. 5, pp. 121-198.
Olsson, N., Baroghel-Bouny, V., Nilsson, L. O., Thiery, M. (2013), Non-saturated ion diffusion in concrete – A new approach to evaluate conductivity measurements. Cement and Concrete Composites. 40:40-47. https://doi.org/10.1016/j.cemconcomp.2013.04.001
Pinto, S. R., Macedo, A. L. A., Medeiros-Junior, R. A. (2018), Effect of preconditioning temperature on the water absorption of concrete. Journal of Building Pathology and Rehabilitation. 3(3):1-10. https://doi.org/10.1007/s41024-018-0032-6
Presuel-Moreno, F., Wu, Y. Y., Liu, Y. (2013), Effect of curing regime on concrete resistivity and aging factor over time. Construction and Building Materials. 48:874-882. https://doi.org/10.1016/j.conbuildmat.2013.07.094
Ramezanianpour, A. A., Pilvar, A., Mahdikhani, M., Moodi, F. (2011), Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength. Construction and Building Materials. 25(5):2472-2479. https://doi.org/10.1016/j.conbuildmat.2010.11.069
Sabbag, N., Uyanik, O. (2018), Determination of the reinforced concrete strength by electrical resistivity depending on the curing conditions. Journal of Applied Geophysics. 155:13-25. https://doi.org/10.1016/j.jappgeo.2018.03.007
Sengul, O. (2014), Use of electrical resistivity as an indicator for durability. Construction and Building Materials. 73:434-441. https://doi.org/10.1016/j.conbuildmat.2014.09.077
Silva, P. C., Ferreira, R. M., Figueiras, H. (2011). “Electrical Resistivity as a Means of Quality Control of Concrete – Influence of Test Procedure†in: Freitas, V. P., Corvacho, H., Lacasse, M. (Eds.), XII International Conference on Durability of Building Materials and Components, FEUP Edições, Porto: Distrito de Porto (PT), 8 p.
Wei, X., Xao, L. (2014), Kinetics parameters of cement hydration by electrical resistivity measurement and calorimetry. Advances in Cement Research. 26(4):187-193. https://doi.org/10.1680/adcr.13.00034
Ye, H., Jin, N., Jin, X. (2017), An Experimental Study on Relationship among Water Sorptivity, Pore Characteristics, and Salt Concentration in Concrete. Periodica Polytechnica Civil Engineering. 61:530-540. https://doi.org/10.3311/PPci.9621
Yildirim, H., Ilica, T., Sengul, O. (2011), Effect of cement type on the resistance of concrete against chloride penetration. Construction and Building Materials. 25(3):1282-1288. https://doi.org/10.1016/j.conbuildmat.2010.09.023
Yu, B., Liu, J., Chen, Z. (2017), Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity. Construction and Building Materials. 138:101-113. https://doi.org/10.1016/j.conbuildmat.2017.01.100
Zhang, S. P., Zong, L. (2014), Evaluation of Relationship between Water Absorption and Durability of Concrete Materials. Advances in Materials Science and Engineering. 2014:1-8. http://dx.doi.org/10.1155/2014/650373
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.