Diagnostic of damage in a building of the early twentieth century in Havana. Case study

Alberto Hernández Oroza, Rafael González Hernández


The objective of this work is to diagnostic the existing deterioration in a reinforced concrete building located in Old Havana, Cuba, built in 1906. Due to the years of exploitation and lack of maintenance, the property began to show detachment of concrete and cracks in almost all structural elements. To evaluate the service life, electrical resistivity studies of the concrete were carried out, chemical tests to quantify the levels of free chloride and sulphate, corrosion potential tests, section losses of the reinforcement bars, extractions of concrete specimens and visual analysis of the present damages. The results obtained showed that although the building presents an advanced deterioration, it can be rehabilitated, and it is possible to extend its service lifetime.


diagnostic, corrosion, resistivity, service life, durability


ACI:562M-16. (2016). Code Requirements for Assessment, Repair, and Rehabilitation of Existing Concrete Structures and Commentary.

Andrade, C. and Alonso, C. (2004), Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. RILEM TC 154-EMC: Electrochemical Techniques for Measuring Metallic Corrosion.

Andrade, C. and D’Andrea, R. (2011), La resistividad eléctrica como parámetro de control del hormigón y de su durabilidad. Revista ALCONPAT, 1(2): 93-101, DOI: http://dx.doi.org/10.21041/ra.v1i2.8

Andrade, J. and Dal Molin, D. (2000), A Case Study about Degradation of Reinforced Concrete Structures in a Marine Macro environment in Brazil. NDT.net, http://www.ndt.net/article/v05n02/andrade/andrade.htm.

ASTM C876 (2009). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete.

ASTM C1152/C1152M-04 (2004), Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete.

Azarsa, P. and Gupta, R. (2017), Electrical resistivity of concrete for durability evaluation: a review. Advances in Materials Science and Engineering, 2017. https://doi.org/10.1155/2017/8453095

Castañeda, A., Howland, J. J., Corvo, F. and Pérez, T. (2013), Corrosion of steel reinforced concrete in the tropical coastal atmosphere of Havana City, Cuba. Quimica Nova, 36: 220-229.

Castañeda, A. and Rodriguez, M. R. (2014), Las pérdidas económicas causadas por el fenómeno de la corrosión atmosférica del acero de refuerzo embebido en el hormigón armado. Revista CENIC Ciencias Químicas, 45: 52-59.

Castañeda, A., Valdés, C. and Corvo, F. (2018), Atmospheric corrosion study in a harbor located in a tropical island. Materials and Corrosion, 1-16. http://dx.doi.org/10.1002/maco.201810161

Castro-Borges, P. and Helene, P. (2007), Service Life of Reinforced Concrete Structures: New Approach. ECS Transactions, 9(13): 9-14. http://dx.doi.org/10.1149/1.2721426

Castro-Borges, P., and Helene, P. (2018). Un enfoque conceptual holístico para la vida de servicio del concreto: división en diferentes etapas de tiempo. Revista ALCONPAT, 8(3), 280 - 287. doi: http://dx.doi.org/10.21041/ra.v8i3.324

Chávez, E., Chab, R. C., Baz, M. S., Castro-Borges, P. and López, T. P. (2013), Corrosion Process of Reinforced Concrete by Carbonation in a Natural Environment and an Accelerated Test Chamber. International Journal of Electrochemical Science, 8: 9015-9029.

Costa, A. and Appleton, J. (2002), Case studies of concrete deterioration in a marine environment in Portugal. Cement and Concrete Composite, 24: 169-179.

Couto, D., Carvalho, M., Cintra, A. and Helene, P. (2015), Concrete structures. Contribution to the safety assessment of existing structures. IBRACON Structures and Materials Journal, 8(3): 365-389. http://dx.doi.org/10.1590/S1983-41952015000300007

CYTED (2003), Manual de rehabilitación de estructuras de hormigón, reparación, refuerzo y protección, Red temática XV.B.

D'Andréa, R. and Andrade, C. (2009), Predicción de la vida útil de las estructuras mediante el uso de la resistividad como indicador de durabilidad. In: IETCC (Editor), Aplicaciones prácticas de seguridad y durabilidad de estructuras de hormigón, Buenos Aires. Argentina, pp. 1-31.

GEOCISA S. A. (2002), Manual de evaluación de estructuras afectadas por corrosión de la armadura. In: Geocisa (J. Rodriguéz y J. Aragoncillo). Y por el Instituto de Ciencias de la Construcción "Eduardo Torroja" del CSIC (C. Andrade y D Iquierdo) dentro del proyecto de Innovación CONTECVET-IN 309021, pp. 152.

Gowers, K. R. and Millard, S. G. (1999), Measurement of Concrete Resistivity for Assessment of Corrosion Severity of Steel Using Wenner Technique, American Concrete Institute.

Helene, P. and Castro-Borges, P. (2009), A novel method to predict concrete carbonation. Concreto y Cemento. Investigación y Desarrollo, 1(1): 25-35.

Howland, J. J. (2012), "Desempeño por durabilidad de las estructuras de hormigón armado". Instituto Politécnico de La Habana, Departamento de Ingeniería Civil, 196 pp.

NACE SP0390 (2009), Maintenance and rehabilitation considerations for corrosion control of atmospherically exposed existing steel-reinforced concrete structures.

Oroza, A. H. and Bouza, D. G., (2015), Influencia del micro-ambiente en el interior de una edificación sobre la corrosión del acero de refuerzo. Revista CENIC Ciencias Químicas, 46: 45-55.

Oroza, A. H., Pimentel, F. R., Parrab, E. P., León, L. M. D. and Amorós, Y. G. (2016), Development of two analytical methods for determination of water-soluble chlorides and sulfates in the conservation of concrete heritage buildings. Journal of Building Chemistry, 1: 61-68. http://dx.doi.org/10.17461/j.buildchem.2016.201

Presuel Moreno, F., Liu, Y. and Paredes, M. (2009), Understanding the Effect of Rebar Presence and/or Multilayered Concrete Resistivity on the Apparent Surface Resistivity Measured via the Four Point Wenner Method. NACE International.

Ramezanianpour, A. A., Pilvar, A., Mahdikhani, M. and Moodi, F. (2011), Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength. Construction and Building Materials, 25: 2472-2479. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.069

Sanchez, J., Andrade, C., Torres, J., Rebolledo, N. and Fullea, J. (2017), Determination of reinforced concrete durability with on-site resistivity measurements. Materials and Structures, 50(41): 1-9. http://dx.doi.org/10.1617/s11527-016-0884-7

Toraya, J. C. (2001), "500 Años de construcciones en Cuba". D.V. Chavín, Servicios Gráficos y Editoriales, S.L., Madrid, 557 pp.

Vera, R., Villarroel, M., Delgado, D., Carvajal, A. M., De Barbieri, F. and Troconis, O. (2009), Influencia de la Acción del Medio Ambiente en la Durabilidad del Concreto. Parte 2. Revista de la Construcción, 8(1): 13-23.

Yu, B., Liu, J. and Chen, Z. (2017), Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity. Construction and Building Materials, 138: 101–113. http://dx.doi.org/10.1016/j.conbuildmat.2017.01.100

DOI: http://dx.doi.org/10.21041/ra.v9i3.327


  • There are currently no refbacks.


Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017