Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material

  • Omar Farid Ojeda Farías Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil
  • Miguel Ángel Baltazar Zamora Facultad de Ingeniería Civil -Xalapa Universidad Veracruzana
  • José Manuel Mendoza Rangel Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil http://orcid.org/0000-0002-5896-6006
Keywords: sugar cane bagasse ash, compaction, CBR, soil, subgrade

Abstract

The aim of the present work was study the influence of sugar cane bagasse ash (SCBA) as a partial substitution of Compound Portland Cement (PCC) in order to enhance the properties of a granular sand soil. AASHTO standard compaction test, unconfined compressive strength test, and CBR test were made, has been compared the behavior of natural soil in study and mix with percentages of 3%, 5% and 7% of PCC as a control percentage, being carried out partial substitutions of PCC by SCBA in 0%, 25%, 50% and 100% percentages with respect to dry soil weight. The results showed enhances in the compacting, CBR and unconfined compressive strength features, reducing up to 25% the consumption of PCC.

Downloads

Download data is not yet available.

Author Biographies

Omar Farid Ojeda Farías, Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil
Candidato a Doctor en Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Doctorado en Ingeniería con Orientación en Materiales de Construcción
Miguel Ángel Baltazar Zamora, Facultad de Ingeniería Civil -Xalapa Universidad Veracruzana
Profesor-Investigador en Facultad de Ingeniería Civil, región Xalapa, Universidad Veracruzana
José Manuel Mendoza Rangel, Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil
Profesor Investigador de Tiempo Completo Titular A de la Facultad de Ingeniería Civil (FIC) de la Universidad Autónoma de Nuevo León (UANL) desde 2010. Tiene una Maestría en Metalurgia y Ciencias de los Materiales por el Instituto de Investigaciones Metalúrgicas de la Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) y un Master en Innovación en las Técnicas, los Sistemas y Materiales de Construcción (CEMCO 2007) en el Instituto Eduardo Torroja de Ciencias de la Construcción (Madrid, España), en donde también realizó una estancia de doctorado en el departamento de Química-Física de Materiales. Recibió el grado de Doctor en Ciencias con Especialidad en Física Aplicada por el Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida (CINVESTAV-Unidad Mérida) en el 2009, en donde también realizó un posdoctorado de 2009 a 2010. Se desempeñó como Jefe del Laboratorio de Investigación de Materiales de Construcción del Instituto de Ingeniería Civil de la UANL de 2011 a 2013. Actualmente se desempeña como Coordinador Académico de Posgrado de la FIC y como Coordinador del Programa de Doctorado en Ingeniería con Orientación en Materiales de Construcción. Es profesor titular del curso “Mecánica de Materiales I†en la Licenciatura de Ingeniería Civil y de los cursos “Metodología de la Investigaciónâ€, “Prevención de problemas patológicos en estructuras de concreto†y “Deterioro de los Materiales de Construcción†en Posgrado. Miembro de ALCONPAT México desde 2005, miembro y Secretario Ejecutivo de ALCONPAT Internacional desde 2011 del cual también es miembro del Comité Científico. También es Editor Ejecutivo de la Revista ALCONPAT. Es miembro del American Concrete Institute (ACI) desde 2011. Es revisor (árbitro) de Revistas científicas nacionales e internacionales tales como: Revista Ingeniería, Investigación y Tecnología de la UNAM, Revista ALCONPAT, Cement and Concrete Composites, Concreto y Cemento. Investigación y Desarrollo del IMCyC entre otras. Funge como Secretario Técnico de la Red Temática PREVENIR del programa CYTED. Ha graduado y actualmente dirige tesis de Doctorado (PhD) y de Maestría (MSc) en los programas de posgrado de la FIC-UANL y de Instituciones externas nacionales. Tiene proyectos de investigación financiados por CONACYT e internos de la UANL. Es autor y co-autor de trabajos científicos publicados y distribuidos en artículos en revistas indizadas en el SCI y el JCR con arbitraje estricto y en congresos de prestigio nacional e internacional en donde también ha presentado conferencias magistrales. Pertenece al Sistema Nacional de Investigadores (SNI) y cuenta con el Reconocimiento a Perfil Deseable para Profesores de Tiempo Completo de PROMEP. Sus intereses en investigación son: Efecto del Cambio Climático Global en estructuras, sustentabilidad de los materiales de construcción, nuevas tecnologías para incrementar la durabilidad de las estructuras.

References

Alavez Ramirez, R., Montes Garcia, P., Martinez Reyes, J., Altamirano Juarez, D., Gochi Ponce, Y. (2012). The use of sugar cane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Materials , 296-305. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2012.02.072

Arenas Piedrahita, J. C., Montes Garcia, P., Mendoza Rangel, J. M., Lopez Calvo, H. Z., Mart, & Martinez Reyes, J. (2016). Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash . Construction and building materials , 69-81. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2015.12.047

ASTM International. (2017). ASTM C618-17a Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Retrieved from https://doi.org/10.1520/C0618-17A

ASTM International. (2017). ASTM C150/C150M-17 Standard specification for portland cement. Retrieved from https://doi.org/10.1520/C0150_C0150M-17

ASTM International. (2010). ASTM D2216-10 Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. Retrieved from https://doi.org/10.1520/D2216-10

ASTM International. (1998). ASTM D2217-85 Standard practice for wet preparation of soil samples for particle-size analysis and determination of soil constants. (Withdrawn 2007) Retrieved from https://doi.org/10.1520/D2217-85R98

ASTM International. (2011). ASTM D2487-11 Standard practice for classification of soils for engineering purposes (Unified soil classification system). Retrieved from https://doi.org/10.1520/D2487-11

ASTM International. (1998). ASTM D421-85 Standard practice for dry preparation of soil samples for particle-size analysis and determination of soil constants. (Withdrawn 2016) Retrieved from https://doi.org/10.1520/D2217-85R98

ASTM International. (2017). ASTM D4318-17 Standard test methods for liquid limit, plastic limit, and plasticity index of soils. Retrieved from https://doi.org/10.1520/D4318-17

ASTM International. (2012). ASTM D698-12 Standard test methods for laboratory compaction characteristics of soil using standard effort. Retrieved from https://doi.org/10.1520/D0698-12

ASTM International. (2017). ASTM D1633-17 Standard test methods for compressive strength of molded soil-cement cylinders. Retrieved from https://doi.org/10.1520/D1633-17

ASTM International. (2016). ASTM D1883-16 Standard test method for california bearing ratio (cbr) of laboratory-compacted soils. Retrieved from https://doi.org/10.1520/D1883-16

ASTM International. (2011). ASTM D558-11 Standard test methods for moisture-density (unit weight) relations of soil-cement mixtures. Retrieved from https://doi.org/10.1520/D0558-11

Basha, E. A., Hashim, R., Mahmud, H. B., Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and building materials , 19 (6) pp: 448-453. DOI: https://doi.org/10.1016/j.conbuildmat.2004.08.001

Behak, L., Perez Nuñez, W. (2008). Caractrización de un material compuesto por suelo arenoso, ceniza de cascara de arroz y cal potencialmente útil para su uso en pavimentación. Revista Ingeniería de Construcción, 23 (1), pp: 34-41. http://www.ricuc.cl/index.php/ric/article/view/BEHAK

CONADESUCA. (2017). 4to. Informe estadístico del sector agroindustrial de la caña de azúcar en México. Ciudad de México: SAGARPA.

Cordeiro, G. C., Kurtis, K. E. (2017). Effect of mechanical processing on sugar cane bagasse ash pozzolanicity. Cement and Concrete Research, Volume 97, pp: 41-49. DOI: https://doi.org/10.1016/j.cemconres.2017.03.008

Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., Fairbairn, E. M. (2008). Pozzolanic activity and filler effect of sugar cane bagasse ash in portland cement and lime mortars. Cement and Concrete Composites, Volume 30, Issue 5, pp: 410-418. DOI: https://doi.org/10.1016/j.cemconcomp.2008.01.001

Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., Rego Fairbairn, E. de M. (2009). Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cement and Concrete Research, 39 (2), pp: 110-115. DOI: https://doi.org/10.1016/j.cemconres.2008.11.005

Cordeiro, G. C., Toledo, R. D., Fairbairn, E. M. (2009). Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, Volume 23, Issue 10, pp: 3301-3303. DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.013

Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D. (2012). Soil stabilization using alkaline activation of fly ash self compacting rammed earth construction. Construction and building materials, Volume 36, pp: 727-735. DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.037

de Soares, M. M., Garcia, D. C., Figueiredo, R. B., P. Aguilar, M. T., & Cetlin, P. R. (2016). Comparing the pozzolanic behavior of sugar cane bagasse ash to amorphous and crystalline SiO2. Cement and Concrete Composites, Volume 71, pp: 20-25. DOI: https://doi.org/10.1016/j.cemconcomp.2016.04.005

Fernandez Loaiza, C. F. (1982). Mejoramiento y estabilización de suelos. D.F: LIMUSA.

Frias, M., Villar, E., & Savastano, H. (2011). Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement and Concrete Composites, Volume 33, Issue 4, pp: 490-499. DOI: https://doi.org/10.1016/j.cemconcomp.2011.02.003

Ganesan, K., Rajagopal, K., & Thangavel, K. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites, Volume 29, Issue 6, pp: 515-524. DOI: https://doi.org/10.1016/j.cemconcomp.2007.03.001

Imcyc (2017). Estabilización de suelos con cemento portland. Biblbioteca digital . (IMCYC, Ed.) Ciudad de México, D.F, México.

Jagadesh, P., Ramachandramurthy, A., Murugesan, R., Sarayu, K. (2015). Micro-Analytical studies on sugar cane bagasse ash. Sadhana, Volume 40, Issue 5, pp: 1629–1638. DOI: https://doi.org/10.1007/s12046-015-0390-6

Jimenez Quero, V. G., Leon Martinez, F. M., Montes Garcia, P., Gaona Tiburcio, C., Chacon Nava, J. G. (2013). Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construction and Building Materials. Volume 40, pp: 691-701, DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.023

Jofre, C., Kraemer, C., Sampedro, A., Lopez Bachiller, A., Atienza, M., Diaz, M., et. al. (2008). Manual de estabilización de suelos con cemento o cal. Madrid: Instituto Español del cemento y sus aplicaciones.

Joshaghani, A., & Moeini, M. A. (2017). Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Construction and building materials, Volume 152, pp: 818-831. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.041

Juarez Gutierrez, O., & Inzunza Ortiz, M. A. (2011). Guía practica de estabilización y recuperación de pavimentos con cemento portland en México. Ciudad de México: AMIVTAC.

Moraes, J. C., Akasaki, J. L., Melges, J. L., Monzo, J., Borrachero, M. V., Soriano, L., Payá, J., Tashima, M. M. (2015). Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended portland cement: microstructural characterization of pastes and mechanical strength of mortars. Construction and Building Materials, Volume 94, pp: 670-677. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.108

Morales, E. V., Villar Cociña, E., Frias, M., Santos, S. F., & Savastano, H. J. (2009). Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cement & Concrete Composites, Volume 31, Issue 1, pp: 22-28. DOI: https://doi.org/10.1016/j.cemconcomp.2008.10.004

Muntohar, A. S., & Hantoro, G. (2016). Influence of the rice husk ash and lime on engineering properties of clayey sub-grade. EJGE , 1-13.

NMX C414. (2004). Cementos hidráulicos especificaciones y métodos de prueba. Ciudad de México : ONNCCE.

Onyelowe, K. C. (2012). Cement stabilized Akwuete Lateritic soil and the use of bagasse ash as admixture. Science and engineering investigations , 1, 16-20.

Rico Rodriguez, A., Orozco y Orozco, J., Telles Gutierrez, J. M., Perez Garcia, A. (1990). Manual de calidad de los materiales en secciones estructurales de pavimentos carreteros. Sanfandilla.

Rico-Rodriguez, A., Del Castillo, H. (2006). La ingeniería de suelos en las vías terrestres carreteras, ferrocarriles y aeropistas (Vol. 1). (N. editores, Ed.) Ciudad de México: Limusa.

Correia, A. A. S., Rasteiro, M. G. (2016). Nanotechnology applied to chemical soil stabilization. ProcediaEngineering, Volume 143, pp: 1252-1259. DOI: https://doi.org/10.1016/j.proeng.2016.06.113

Sargent, P., Hughes, P. N., Rouainia, M., Glendinning, S. (2012). Soil stabilization using sustainable industrial by-product binders and alkali activation. GeoCongress, 948-957. DOI: https://doi.org/10.1061/9780784412121.098

Sing, N. B., Singh, V. D., Rai, S. (2000). Hydration of bagasse ash-blended portland cement. Cement and Concrete Research, Volume 30, Issue 9, pp: 1485-1488. DOI: https://doi.org/10.1016/S0008-8846(00)00324-0

Suarez, J. (2009). Deslizamientos. Análisis geotécnicos (Vol. 1). Colombia: U. Industrial de Santander.

Torres Rivas, B. J., Gaitan Arevalo, J. R., Espinoza Perez, L. J., Escalante Garcia, J. I. (2014). Valoración de ceniza de bagazo de caña de la industria azucarera Nicaragüense como sustituto parcial al cemento portland . Nexo Revista Científica, Vol. 27, Núm. 2, pp: 82-89. DOI: http://dx.doi.org/10.5377/nexo.v27i2.1944

Published
2018-04-30
How to Cite
Ojeda FaríasO. F., Baltazar ZamoraM. Ángel, & Mendoza Rangel, J. M. (2018). Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. Revista ALCONPAT, 8(2), 194-208. https://doi.org/10.21041/ra.v8i2.282
Section
Applied Research