Influence of sugar cane bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material
Abstract
The aim of the present work was study the influence of sugar cane bagasse ash (SCBA) as a partial substitution of Compound Portland Cement (PCC) in order to enhance the properties of a granular sand soil. AASHTO standard compaction test, unconfined compressive strength test, and CBR test were made, has been compared the behavior of natural soil in study and mix with percentages of 3%, 5% and 7% of PCC as a control percentage, being carried out partial substitutions of PCC by SCBA in 0%, 25%, 50% and 100% percentages with respect to dry soil weight. The results showed enhances in the compacting, CBR and unconfined compressive strength features, reducing up to 25% the consumption of PCC.
Downloads
References
Alavez Ramirez, R., Montes Garcia, P., Martinez Reyes, J., Altamirano Juarez, D., Gochi Ponce, Y. (2012). The use of sugar cane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Materials , 296-305. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2012.02.072
Arenas Piedrahita, J. C., Montes Garcia, P., Mendoza Rangel, J. M., Lopez Calvo, H. Z., Mart, & Martinez Reyes, J. (2016). Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash . Construction and building materials , 69-81. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2015.12.047
ASTM International. (2017). ASTM C618-17a Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Retrieved from https://doi.org/10.1520/C0618-17A
ASTM International. (2017). ASTM C150/C150M-17 Standard specification for portland cement. Retrieved from https://doi.org/10.1520/C0150_C0150M-17
ASTM International. (2010). ASTM D2216-10 Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. Retrieved from https://doi.org/10.1520/D2216-10
ASTM International. (1998). ASTM D2217-85 Standard practice for wet preparation of soil samples for particle-size analysis and determination of soil constants. (Withdrawn 2007) Retrieved from https://doi.org/10.1520/D2217-85R98
ASTM International. (2011). ASTM D2487-11 Standard practice for classification of soils for engineering purposes (Unified soil classification system). Retrieved from https://doi.org/10.1520/D2487-11
ASTM International. (1998). ASTM D421-85 Standard practice for dry preparation of soil samples for particle-size analysis and determination of soil constants. (Withdrawn 2016) Retrieved from https://doi.org/10.1520/D2217-85R98
ASTM International. (2017). ASTM D4318-17 Standard test methods for liquid limit, plastic limit, and plasticity index of soils. Retrieved from https://doi.org/10.1520/D4318-17
ASTM International. (2012). ASTM D698-12 Standard test methods for laboratory compaction characteristics of soil using standard effort. Retrieved from https://doi.org/10.1520/D0698-12
ASTM International. (2017). ASTM D1633-17 Standard test methods for compressive strength of molded soil-cement cylinders. Retrieved from https://doi.org/10.1520/D1633-17
ASTM International. (2016). ASTM D1883-16 Standard test method for california bearing ratio (cbr) of laboratory-compacted soils. Retrieved from https://doi.org/10.1520/D1883-16
ASTM International. (2011). ASTM D558-11 Standard test methods for moisture-density (unit weight) relations of soil-cement mixtures. Retrieved from https://doi.org/10.1520/D0558-11
Basha, E. A., Hashim, R., Mahmud, H. B., Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and building materials , 19 (6) pp: 448-453. DOI: https://doi.org/10.1016/j.conbuildmat.2004.08.001
Behak, L., Perez Nuñez, W. (2008). Caractrización de un material compuesto por suelo arenoso, ceniza de cascara de arroz y cal potencialmente útil para su uso en pavimentación. Revista IngenierÃa de Construcción, 23 (1), pp: 34-41. http://www.ricuc.cl/index.php/ric/article/view/BEHAK
CONADESUCA. (2017). 4to. Informe estadÃstico del sector agroindustrial de la caña de azúcar en México. Ciudad de México: SAGARPA.
Cordeiro, G. C., Kurtis, K. E. (2017). Effect of mechanical processing on sugar cane bagasse ash pozzolanicity. Cement and Concrete Research, Volume 97, pp: 41-49. DOI: https://doi.org/10.1016/j.cemconres.2017.03.008
Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., Fairbairn, E. M. (2008). Pozzolanic activity and filler effect of sugar cane bagasse ash in portland cement and lime mortars. Cement and Concrete Composites, Volume 30, Issue 5, pp: 410-418. DOI: https://doi.org/10.1016/j.cemconcomp.2008.01.001
Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M., Rego Fairbairn, E. de M. (2009). Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cement and Concrete Research, 39 (2), pp: 110-115. DOI: https://doi.org/10.1016/j.cemconres.2008.11.005
Cordeiro, G. C., Toledo, R. D., Fairbairn, E. M. (2009). Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, Volume 23, Issue 10, pp: 3301-3303. DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.013
Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D. (2012). Soil stabilization using alkaline activation of fly ash self compacting rammed earth construction. Construction and building materials, Volume 36, pp: 727-735. DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.037
de Soares, M. M., Garcia, D. C., Figueiredo, R. B., P. Aguilar, M. T., & Cetlin, P. R. (2016). Comparing the pozzolanic behavior of sugar cane bagasse ash to amorphous and crystalline SiO2. Cement and Concrete Composites, Volume 71, pp: 20-25. DOI: https://doi.org/10.1016/j.cemconcomp.2016.04.005
Fernandez Loaiza, C. F. (1982). Mejoramiento y estabilización de suelos. D.F: LIMUSA.
Frias, M., Villar, E., & Savastano, H. (2011). Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cement and Concrete Composites, Volume 33, Issue 4, pp: 490-499. DOI: https://doi.org/10.1016/j.cemconcomp.2011.02.003
Ganesan, K., Rajagopal, K., & Thangavel, K. (2007). Evaluation of bagasse ash as supplementary cementitious material. Cement and Concrete Composites, Volume 29, Issue 6, pp: 515-524. DOI: https://doi.org/10.1016/j.cemconcomp.2007.03.001
Imcyc (2017). Estabilización de suelos con cemento portland. Biblbioteca digital . (IMCYC, Ed.) Ciudad de México, D.F, México.
Jagadesh, P., Ramachandramurthy, A., Murugesan, R., Sarayu, K. (2015). Micro-Analytical studies on sugar cane bagasse ash. Sadhana, Volume 40, Issue 5, pp: 1629–1638. DOI: https://doi.org/10.1007/s12046-015-0390-6
Jimenez Quero, V. G., Leon Martinez, F. M., Montes Garcia, P., Gaona Tiburcio, C., Chacon Nava, J. G. (2013). Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construction and Building Materials. Volume 40, pp: 691-701, DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.023
Jofre, C., Kraemer, C., Sampedro, A., Lopez Bachiller, A., Atienza, M., Diaz, M., et. al. (2008). Manual de estabilización de suelos con cemento o cal. Madrid: Instituto Español del cemento y sus aplicaciones.
Joshaghani, A., & Moeini, M. A. (2017). Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Construction and building materials, Volume 152, pp: 818-831. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.041
Juarez Gutierrez, O., & Inzunza Ortiz, M. A. (2011). GuÃa practica de estabilización y recuperación de pavimentos con cemento portland en México. Ciudad de México: AMIVTAC.
Moraes, J. C., Akasaki, J. L., Melges, J. L., Monzo, J., Borrachero, M. V., Soriano, L., Payá, J., Tashima, M. M. (2015). Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended portland cement: microstructural characterization of pastes and mechanical strength of mortars. Construction and Building Materials, Volume 94, pp: 670-677. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.108
Morales, E. V., Villar Cociña, E., Frias, M., Santos, S. F., & Savastano, H. J. (2009). Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cement & Concrete Composites, Volume 31, Issue 1, pp: 22-28. DOI: https://doi.org/10.1016/j.cemconcomp.2008.10.004
Muntohar, A. S., & Hantoro, G. (2016). Influence of the rice husk ash and lime on engineering properties of clayey sub-grade. EJGE , 1-13.
NMX C414. (2004). Cementos hidráulicos especificaciones y métodos de prueba. Ciudad de México : ONNCCE.
Onyelowe, K. C. (2012). Cement stabilized Akwuete Lateritic soil and the use of bagasse ash as admixture. Science and engineering investigations , 1, 16-20.
Rico Rodriguez, A., Orozco y Orozco, J., Telles Gutierrez, J. M., Perez Garcia, A. (1990). Manual de calidad de los materiales en secciones estructurales de pavimentos carreteros. Sanfandilla.
Rico-Rodriguez, A., Del Castillo, H. (2006). La ingenierÃa de suelos en las vÃas terrestres carreteras, ferrocarriles y aeropistas (Vol. 1). (N. editores, Ed.) Ciudad de México: Limusa.
Correia, A. A. S., Rasteiro, M. G. (2016). Nanotechnology applied to chemical soil stabilization. ProcediaEngineering, Volume 143, pp: 1252-1259. DOI: https://doi.org/10.1016/j.proeng.2016.06.113
Sargent, P., Hughes, P. N., Rouainia, M., Glendinning, S. (2012). Soil stabilization using sustainable industrial by-product binders and alkali activation. GeoCongress, 948-957. DOI: https://doi.org/10.1061/9780784412121.098
Sing, N. B., Singh, V. D., Rai, S. (2000). Hydration of bagasse ash-blended portland cement. Cement and Concrete Research, Volume 30, Issue 9, pp: 1485-1488. DOI: https://doi.org/10.1016/S0008-8846(00)00324-0
Suarez, J. (2009). Deslizamientos. Análisis geotécnicos (Vol. 1). Colombia: U. Industrial de Santander.
Torres Rivas, B. J., Gaitan Arevalo, J. R., Espinoza Perez, L. J., Escalante Garcia, J. I. (2014). Valoración de ceniza de bagazo de caña de la industria azucarera Nicaragüense como sustituto parcial al cemento portland . Nexo Revista CientÃfica, Vol. 27, Núm. 2, pp: 82-89. DOI: http://dx.doi.org/10.5377/nexo.v27i2.1944
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.