Colorimetry of modified clays with mineral and organic additions

Wilfrido Martinez Molina, Andres Antonio Torres Acosta, Hugo Luis Chavez Garcia, Elia Mercedes Alonso Guzman, Cindy Lara Gomez, Juan Alberto Bedolla Arroyo, Herwing Zeth Lopez Calvo, Jose Luis Ruvalcaba Sil


The objective of this investigation was to quantify the colorimetric values of different clays with some additions. Exploring the aesthetic appreciation, based on the clay color, of different additions percentages (by clay mass) with Santiago Undameo Bank, Mexico, clays as main matrix. Clay was kaolinite and the additions were gypsum, lime, opuntia cactus mucilage, portland cement, and sodium hydroxide. The addition percentages were 2%, 4%, 6%, 8% and 10%. The best colorimetric performances were obtained from Portland cement at 6%, sodium hydroxide at 4%, lime and gypsum at 8% and opuntia cactus mucilage at 4% and 8%. Some buildings where these clay materials were used are: Casas grandes en Paquimé, Chihuahua, La Venta en Tabasco, Yácatas en Tzintzuntzan, among others.


clay; colorimetry; additions; restoration


Ahmed, A., Keizo, U. (2011), Environmental effects on durability of soil stabilized with recycled gypsum. Cold Regions Science and Technology. 66(2 & 3): 84-92.

Ahmed, A., Usama, H. I. (2014), Stability of soft clay soil stabilised with recycled gypsum in a wet environment. Soils and Foundations. 54(3):405-416.

Anikwe, M. A. N., Eze, J. C., Ibudialo, A. N. (2016), Influence of lime and gypsum application on soil properties and yield of cassava (Manihot esculenta Crantz.) in a degraded Ultisol in Agbani, Enugu Southeastern Nigeria. Soil and Tillage Research. 158: 32-38.

Flores Ponce, A. (2018), “Morteros base arcilla, estabilizados con adiciones orgánicas y minerales para su uso patrimonial”, tesis de Licenciatura en Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, pp. 20-31.

Benjamin, W. A. (1969), “Introduction to Crystallography”. New York, USA, Inc., pp. 83–100.

Besoain, E. (1985), “Mineralogía de arcillas de suelos”. San José, Costa Rica. IICA, pp. 997–1013.

Carrol, D., Starkey, H. C. (1971), Reactivity of clay minerals with acids and alkalies. Clays and Clay Minerals. 19: 321-333.

Cuellar López, A. M. A. (2014), “Tecnología de Morteros Constructivos de Tierra: una tradición en la vertiente del Lerma Medio en el Epiclásico”, tesis Maestría Arquitectura, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México,pp. 50-125.

Ma, C., Qin, Z., Zhuang, Y., Chen, L., Chen, B. (2015), Influence of sodium silicate and promoters on unconfined compressive strength of Portland cement-stabilized clay. Soils and Foundations. 55(5):1222–1232.

Dana, E. S., Ford, W. E. (1986), “Tratado de Mineralogía”, Editorial Cecsa, Decimotercera Impresión, México, pp. 741-745.

De León Ambrosio, B. (2017), “Estabilización De Arcilla Para Uso En Estructuras Patrimoniales: Evaluación De Sus Propiedades Físico-Mecánicas A Edades Tardías”, tesis de Licenciatura en Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, pp. 50-65.

Dyson, D. J. (2004), “X – Ray and Electron Diffraction Studies in Materials Science”. Londres, Inglaterra. Editorial Maney Publishing, pp. 77–97, 115–134.

De Aquino, R. E., Marques, J., Costa Campos, M. C., de Oliveira, I. A., de Souza Bahia, A. S. R., Coutrim dos Santo, L. A. (2016), Characteristics of color and iron oxides of clay fraction in Archeological Dark Earth in Apuí region, southern Amazonas, Review Article. Geoderma. 262:35-44.

Flores Rentería, A. (2010), “La norma ASTM D 6276 como instrumento de estabilización de suelos para fines patrimoniales”, tesis de Licenciatura en Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, pp. 15-35.

Gómez González, M. L. (2008), “La restauración. Examen científico aplicado a la conservación de obras de arte”. 5ª Edición. Madrid, España. Cátedra, pp. 31–37.

Gupta, D., Kumar, A. (2017), Performance evaluation of cement-stabilized pond ash-rice husk ashclay mixture as a highway construction material. Journal of Rock Mechanics and Geotechnical Engineering. 9:159-169.

Hotineanu, A., Bouasker, M., Aldaood, A., Al-Mukhtar, M. (2015), Effect of freeze–thaw cycling on the mechanical properties of lime-stabilized expansive clays. Cold Regions Science and Technology. 119:151-157.

Hradil, D., Bezdička, P., Hradilová, J., Vašutová, V. (2016), Microanalysis of clay-based pigments in paintings by XRD techniques. Microchemical Journal. 125:10-20.

Johnston Feller, R. (2001), “Color Science in the Examination of Museum Objects. Non-destructive Procedures”. California, USA. The Getty Conservation Institute, pp. 15–56.

Khemissa, M., Mahamedi, A. (2014), Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science. 95:104-110.

Kittel, C. (2005), “Introduction to Solid State Physics”. 8ª edición. New Cork, USA. John Wiley & Sons, Inc., pp. 35–39.

Kuttah, D., Sato, K. (2015), Review on the effect of gypsum content on soil behavior, Review Article. Transportation Geotechnics. 4:28-37.

Lamb, T., Bourriau, J. (1995), « Colour. Art & Science” (Darwin College Lectures), Cambridge University Press, Cambrigde, U.K.

Li, Y., Zhang, H., Tu, C., Song, F., Luo, Y. (2015), Occurrence of red clay horizon in soil profiles of the Yellow River Delta: Implications for accumulation of heavy metals. Journal of Geochemical Exploration.

Lin, Y. -H., Hori, Y., Hoshino, S., Miyazawa, C., Kohno, Y., Shibat, M. (2014), Fluorescent colored material made of clay mineral and phycoerythrin pigment derived from seaweed. Dyes and Pigments. 100:97-103.

López-Lara, T., Zepeda-Garrido, J. A., Castaño, V. M. (1999), Comparative Study of the effectiveness of different additives on the expansion behavior of clays. Electronic Journal of Geotechnical Engineering. 4.

Mahmoudi S., Bennour, A., Meguebli, A., Srasra, E., Zargouni, F. (2016), Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia. Applied Clay Science. 127 & 128: 78-87.

Mardani-Aghabaglou A., Kalıpcılar, İ., İnan Sezer, G., Sezer, A., Altun, S. (2015), Freeze–thaw resistance and chloride-ion penetration of cement-stabilized clay exposed to sulfate attack. Applied Clay Science. 115:179-188.

Mattone, R. (2005), Sisal fibre reinforced soil with cement or cactus pulp in bahareque technique. Cement and Concrete Composites. 27 (5) pp :611-616.

Modarres A., Nosoudy, Y. M. (2015), Clay stabilization using coal waste and lime — Technical and environmental impacts. Applied Clay Science. 116 & 117 pp:281-288.

Olguin Domínguez, M. A. (2008), “Efectos mecánicos de la estabilización volumétrica de montmorillonita con CaSO4”, tesis de Licenciatura en Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, pp. 10-50.

Özkan, I., Yayla, Z. (2016), Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples. Ultrasonics. 66:4-10.

Hu, Q., Xu, Z., Qiao, S., Haghseresht, F., Wilson, M., Lu, G. Q. (2007), A novel color removal adsorbent from heterocoagulation of cationic and anionic clays. Journal of Colloid and Interface Science. 308 (1):191-199.

Rathossi, C., Pontikes, Y. (2010), Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: Reaction paths, crystalline phases, microstructure and colour. Journal of the European Ceramic Society. 30(9):1841-1851.

Sangiorgi C., Tataranni, P., Simone, A., Vignali, V., Lantieri, C., Dondi, G. (2016), Assessment of waste bleaching clay as alternative filler for the production of porous asphalts. Construction and Building Materials. 109:1-7.

Valanciene V., Siauciunas, R., Baltusnikaite, J. (2010), The influence of mineralogical composition on the colour of clay body. Journal of the European Ceramic Society. 30(7):1609-1617.

Vakili, M. V., Chegenizadeh, A., Nikraz, H., Keramatikerman, M. (2016), Investigation on shear strength of stabilised clay using cement, sodium silicate and slag. Applied Clay Science. 124 & 125:243-251.

Velázquez Pérez, J. A. (2015), “Arqueología experimental en Morteros Base Cal para Uso Patrimonial”, tesis de Licenciatura en Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, pp. 20-60.

Viscarra Rossel, R. A., Cattle, S. R., Ortega, A., Fouad, Y. (2009), In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma. 150(3 & 4):253-266.

Westland, S. © (2017), http: //

Wu, Z., Deng, Y., Liu, S., Liu, Q., Chen, Y., Zha, F. (2016), Strength and micro-structure evolution of compacted soils modified by admixtures of cement and metakaolin. Applied Clay Science. 127 & 128:44-51.

Caoa, Y., Guoa, Q., Zhuanga, Y., Yua, Z., Guoa, W., Zhangb, C., Zhub, M., Zhaoa, Q., Ren T., (2017), Removal of harmful constituents from geothermal water by selected anion clays. Procedia Earth and Planetary Science. 17:161 – 164.

Zak, P., Ashour, T., Korjenic, A., Korjenic, S., Wu, W., (2016), The influence of natural reinforcement fibers, gypsum and cement on compressive strength of earth bricks materials, Construction and Building Materials. 106:179-188.

Zhang, X., Mavroulidou, M., Gunn, M. J. (2015), Mechanical properties and behaviour of a partially saturated lime-treated, high plasticity clay. Engineering Geology. 193:320-336.



  • There are currently no refbacks.


Reservation of rights for exclusive use No.04-2013-011717330300-203  e-ISSN: 2007-6835. Revista ALCONPAT, Copyright © 2011 - 2017