Influência de materiais de proteção na resistividade elétrica do concreto
Abstract
The durability of concrete structures is a result of the protective action of concrete on the reinforcement. When there is no passivation of steel, the structure becomes vulnerable to corrosion, and once corrosion starts its propagation is essentially controlled by the electrical resistivity of concrete. The objective of this study was to evaluate the change in electrical resistivity of concretes produced with different types of cement: CP II F, CP IV and CP V that were surface-treated with pore filler and polymer mortar. For analysis purposes, the results were compared with those of the blanks that were not subjected to surface treatment.
These treatments were performed in concretes with the following compressive strengths at the age of 28 days: 21.6 MPa, 26.6 MPa and 31.6 MPa. For all types of cement used and strengths adopted, surface treatment with polymer mortar led to higher electrical resistivity values.
Key words: concrete; durability; surface protection material; electrical resistivity
Downloads
References
Abreu A. G. (1998), Efeito das Adições Minerais na Resistividade Elétrica de Concretos Convencionais, Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, p.129.
Andrade C. (2005), Model for prediction of reinforcement concrete service life based on electrical resistivity, Revista IBRACON de Materiais, Vol. 1, No. 1, pp.01-05.
Associação Brasileira de Normas Técnicas. NBR 12655 (2006), Concreto de cimento Portland - Preparo, controle e recebimento – Procedimento, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. NBR 6118 (2003), Projeto de estruturas de concreto - Procedimento. Rio de Janeiro.
Cervo T.C. (2001), Influência da finura e do teor de pozolanas na penetração de cloretos e na solução aquosa dos poros do concreto, Dissertação de Mestrado, Universidade Federal de Santa Maria, p.129.
Gowers K.L., Milard S.G. (1999), Measurement of concrete resistivity for assessment of corrosion severity of steel using Wenner technique, ACI Materials Journal, Vol. 96, No. 5, pp. 536-541.
Helene P.R.L. (1993), Contribuição ao estudo da corrosão em armaduras de concreto armado, Tese Livre Docência em Engenharia – Escola Politécnica da Universidade de São Paulo, p. 271.
Helene P.R.L., Terzian P. (1992), Manual de dosagem e controle do concreto, Brasil, São Paulo: Pini, 1992, p.349.
Hoppe T.F. (2005), Resistividade Elétrica de Concretos Contendo Diferentes Teores de Cinza de Casca de Arroz, Dissertação de Mestrado, Universidade Federal de Santa Maria, Santa Maria, p.146.
Hunkeler F. (1996), The resistivity of pore water solution: A decisive parameter of rebar corrosion and repair methods, Construction and Building Materials, Vol. 10, No. 5, pp. 381-389.
Hussain S.E., Rasheeduzzafar S. E. (1994), Corrosion resistance performance of fly ash blended cement concrete, ACI Materials Journal, Vol. 91, No. 3, pp. 264-272.
Lübeck A. (2008), Resistividade Elétrica de Concretos de Cimento Portland Branco e Elevados Teores de Escória de Alto Forno, Dissertação de Mestrado, Universidade Federal de Santa Maria, Santa Maria, p.142.
Mehta P.K., Gerwick Jr B.C. (1982), Cracking-corrosion interation in concrete exposed to marine environment, Concrete International, Vol. 4, No.10, pp. 45-51.
Mehta P.K., Monteiro P.J.M. (2008), Concreto: estrutura, propriedades e materiais, Brasil, São Paulo: Pini, 2008, p.674.
Neville A.M. (1997), Propriedades do concreto, São Paulo, Brasil: Pini, 1997, p. 828.
Polder R.B. (2001), Test methods for on site measurement of resistivity of concrete – a RILEM TC-154 technical recommendation, Construction and Building Materials, 15, 2-3, pp.125-131.
Revista Téchne (2009), edição n.152 novembro de 2009.
Schiessl P. (1987), Influence of the composition of concrete on the corrosion protection of the reinforcement, Proceedings American Concrete Institute, Detroit MI (USA), pp1634-1650.
Shi C., Stegemann J.A., Caldwell R.J. (1998), Effect of supplementary cementing materials on the specific conductivity of pore solution and this implications on the Rapid Chloride Permeability Test (AASHTO T277 and ASTM C1202) results, ACI Materials Journal, Vol. 95, No. 4, pp. 389-394.
Smith K.M., Schokker A.J., Tikalsky P.J. (2004), Performance of supplementary cementitious materials in concrete resistivity and corrosion monitoring evaluations, ACI Materials Journal, Vol. 101, No. 5, pp. 385-390.
Thompson J.L., Silsbee M.R., Gill P.M., Scheetz B.E. (1997), Characterization of silicate sealers on concrete, Cement and Concrete Research, Vol. 27, No. 10, pp. 1561-1567.
Whiting D.A., Nagi M.A. (2003), Electrical resistivity of concrete: A literature review. R&D (Skokie, Illinois, USA: Serial n. 2457, Portland Cement Association), p. 57.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.