Contribution to reinforced concrete beams degraded in fire situations: Comparative analysis between structural reinforcement with carbon fibers and sheet metal

Keywords: reinforced concrete beams, structural reinforcement, carbon fiber, sheet metal, fire

Abstract

This article aims to compare two structural reinforcement techniques, carbon fibers and the metal sheets, used to recovery of the degraded reinforced concrete elements. It will be simulated the deterioration of a beam in a fire situation from a thermal numerical modelling and then the two mentioned reinforcements are calculated. The carbon fibers required a smaller area compared to that obtained for metal sheets, due to its high mechanical strength. This work is a preliminary study that involved only a thermal analysis of a beam, not considering the loading and its implications. It is concluded that structural reinforcement in carbon fiber presents greater advantages than metal sheets for recovery of degraded reinforced concrete beams.

Downloads

Download data is not yet available.

References

ABNT, Associação Brasileira de Normas Técnicas (2008), “NBR 8800: projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifíciosâ€. Rio de Janeiro: ABNT.

ABNT, Associação Brasileira de Normas Técnicas (2000), “NBR 14432: exigências de resistência ao fogo de elementos construtivos de edificações – procedimentoâ€. Rio de Janeiro: ABNT.

ABNT, Associação Brasileira de Normas Técnicas (2012), “NBR 15200: projeto de estruturas de concreto em situação de incêndio – procedimentoâ€. Rio de Janeiro: ABNT.

ABNT, Associação Brasileira de Normas Técnicas (2014), “NBR 6118: projeto de estruturas de concreto – procedimentoâ€. Rio de Janeiro: ABNT.

ACI, American Concrete Institute (2008), “Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures ACI 440.2Râ€. Farmington Hills: ACI.

Adorno, F. V., Dias, F. O., Silveira, J. C. O. (2015) “Recuperação e Reforço de Vigas de Concreto armadoâ€, Trabalho de Conclusão de Curso, Universidade Federal de Goiás, Goiás, p. 70.

Branco, F. G. (2012), “Reabilitação e reforço de estruturasâ€. Portugal: Instituto Superior Técnico.

Chowdhury, E. U. et al. (2008), “Residual Behavior of Fire-Exposed Reinforced Concrete Beams Prestrengthened in Flexure with Fiber-Reinforced Polymer Sheetsâ€. Journal of Composite for Construction,12 (1):61-68. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(61)

Deeny, S. M., Stratford, T., Dhakal R. P. (2008), “Spalling of concrete: Implications for structural performance in fireâ€, Conference Paper, University of Canterbury, New Zealand, pp. 1-5.

EUROCODE, European Committee for Standardization (2004), “Eurocode2 - Design of concrete structures - Part 1-2: General rules - Structural fire designâ€. Brussels: EUROCODE.

Fard, M. Y. et al. (2014), “Damage characterization of surface ond sub-surface defects in stitch-bonded biaxial carbon/epoxy compositesâ€. Composites Part B: Engineering, 56:861-829. https://doi.org/10.1016/j.compositesb.2013.09.011

Firmo, J. P. et al. (2015), “Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems designâ€. Materials and Design, 65:1064-1074. https://doi.org/10.1016/j.matdes.2014.10.053

Foster, S. K., Bisby L. A. (2005), “High Temperature residual properties of externally-bonded FRP Systemsâ€, in: Proceedings of the 7th international symposium on fiber reinforced polymer reinforcement for reinforced concrete structures (FRPRCS-7) ACI SP230-70, 7:1235-1252.

Hertz, K. D. (2003), “Limits os spalling of fire-exposed concreteâ€. Fire Safety Journal, 38 (2):103-116. https://doi.org/10.1016/S0379-7112(02)00051-6

Ingham, J. P. (2009), “Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structuresâ€. Materials characterization, 60(7):700-709. https://doi.org/10.1016/j.matchar.2008.11.003

ISO, International Standard (1999), “Fire-resistance tests - Elements of building construction - Part 1: General requirementsâ€. Geneva: ISO, p. 25.

Jiangtao, Y. et al. (2017), “The performance of near-surface mounted CFRP strengthened RC beam in fireâ€. Fire Safety Journal, 90:86-94. https://doi.org/10.1016/j.firesaf.2017.04.031

Khoury, G.A. (2000), “Effect of fire on concrete and concrete structuresâ€. Progress in Structural Engineering an Materials banner, 2:429-447. https://doi.org/10.1002/pse.51

Kobes, M. et al. (2010), “Building safety and human behaviour in fire: A literature reviewâ€. Fire Safety Journal, 45(1):1-11. https://doi.org/10.1016/j.firesaf.2009.08.005

Kodur, A.K.R., Agrawal, A. (2016), “An approach for evaluating residual capacity of reinforced concrete beams exposed to fireâ€. Engineering Structures, 110:293-306. https://doi.org/10.1016/j.engstruct.2015.11.047

Kumahara et al. (1993), “Tensile Strength of continuos Fiber Bar under High Temperatureâ€, in: International Symposium on Fiber-Reinforced Plastic for Concrete Structures, pp. 731-742.

Lin, X., Zhang, Y.X. (2013), “Nonlinear finite element analyses of steel/FRP-reinforced concrete beams in fire conditionsâ€. Composite Structures, 97:277-285. https://doi.org/10.1016/j.compstruct.2012.09.042

Machado, A.P. (2002), “Reforço de estrutura de construção armado com fibras de carbonoâ€. São Paulo: Editora Pini Ltda.

Machado, A.P. (2007), “Reforço de estruturas de concreto com fibras de carbonoâ€. São Paulo: Revista Téchne.

Obaidat, Y.T. (2011) “Sctutural retrofiting of reinforced concrete beams using carbono fibre reinforced polymerâ€, Thesis de doctorado, Department of Construction Sciences, Division of Structural Mechanics, LTH, Lund University, Sweden, p. 88.

Raoof S.M., Bournas, D.A. (2017), “TRM versus FRP in flexural strengtening of RC beams: Behaviour at high temperaturesâ€. Construction and Buildding Materials, 154:424-437. https://doi.org/10.1016/j.conbuildmat.2017.07.195

Reis, L.S.N. (1998) “Reforço de vigas de concreto armado por meio de barras de aço adicionais ou chapas de aço e argamassa de alto desempenhoâ€, Dissertação de Mestrado em Engenharia de Estruturas, Escola Engenharia de São Carlos, Universidade de São Paulo, São Carlos, p.293.

Reis, L.S.N. (2001), “Sobre a recuperação e reforço de estruturas de concreto armadoâ€, Dissertação de Mestrado em Engenharia de Estruturas, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, p. 114.

Souza, A.F.V.S. (2008), “Reparação, Reabilitação e Reforço de Estruturas de Betão Armadoâ€, Dissertação de Mestrado em Engenharia de Estruturas, Universidade do Porto, Portugal, p.114.

Stukovnik, P. et al. (2014), “Alkali-carbonate reaction in concrete and its implications for a righ rate of long-term compressive strength increaseâ€. Constrution and Buildings Materials.50:699-709. https://doi.org/10.1016/j.conbuildmat.2013.10.007

Tanamo, H. et al. (1997), “Tensile Properties at High Temperature of Continuous Fiber BArs and Deflections of contínuos Fiber Reinforced Concrete Beams under High-Temperature Loadingâ€, in: The 3th Internacional Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, 2:43-50.

Wang, G. et al. (2013), “Fire safety provisions for aged concrete building structures†in: The 9th Asia-Oceania Symposium on Fire Science and Technology, 62:629-638. https://doi.org/10.1016/j.proeng.2013.08.108

Wang, Y.C. et al. (2003), “Mechanical Properties of Fiber Reinforced Polymer Reinforcing Bars at Elevated Temperaturesâ€, in ASCE – SFPE Specialty Conference on Designing Structures for Fire, pp 183-192.

Published
2018-12-30
How to Cite
SimõesY. de S., & Santos, C. F. R. (2018). Contribution to reinforced concrete beams degraded in fire situations: Comparative analysis between structural reinforcement with carbon fibers and sheet metal. Revista ALCONPAT, 9(1), 48 - 64. https://doi.org/10.21041/ra.v9i1.259
Section
Applied Research