Service life analysis of reinforced concrete structure under uniform corrosion through ANN model coupled to the FEM
Abstract
The present work intends to analyze and numerically model the corrosion process, estimating the service life of concrete structures. The modelling process was divided in two stages, initiation and propagation. The modeling of the initiation phase was carried out by Artificial Neural Networks (ANN), and the modeling of the propagation phase was done by means of Finite Element Method (FEM). The results show the efficiency of the model generated by the coupling of ANN to the FEM to analyze and study the durability of reinforced concrete structures under uniform corrosion, and the numerical model applicability to estimate the service life of reinforced concrete structures.Downloads
References
Andrade, C. (1992), “Manual para diagnóstico de obras deterioradas por corrosão de armadurasâ€, Tradução de Antônio Carmona e Paulo Helene, São Paulo: PINI, p. 104.
Andrade, J. J. O., Possan, E., Dal Molin, D. C. C. (2017), “Considerations about the service life prediction of reinforced concrete structures inserted in chloride environmentsâ€, Journal of Building Pathology and Rehabilitation, V. 2, p. 1-8.
Associação Brasileira de Normas Técnicas (2014), NBR 6118 - Projeto de estruturas de concreto, Rio de Janeiro, ABNT.
Bakker, R. M. F. (1988), Initiation period. In: Schiess P. “Corrosion of steel in concreteâ€, London, Chapman and Hall, cap. 3, pp. 22-55.
Biondini, F., Frangopol D. M. (2017), “Time-variant redundancy and failure times of deteriorating concrete structures considering multiple limit statesâ€, Structure and Infrastructure Engineering, V.13, pp. 94-106.
Bob, C., Afana, E. (1993), “On-site assessment of concrete carbonationâ€, Proceedings of the International Conference Failure of Concrete Carbonation, RILEM, Bratislava, pp. 84-87.
Broomfield, J. P. (2007), “Corrosion of steel in concrete: understanding, investigation and repairâ€. 2. Ed. New York, Taylor & Francis, pp. 294.
Carmona, A. F., Marega, A. (1988), “Retrospectiva da patologia no Brasil: Estudo EstatÃsticoâ€, in: Jornadas em Español y Portugués sobre Estructuras y Materiales, CEDEX, IETcc, pp. 325-348.
Chang, C. F., Chen, J. W. (2006), “The experimental investigation of concrete carbonation depthâ€, Cement and Concrete Research, V.36, pp. 1760-1767.
Coda, H. B. (2003), “Análise não linear geométrica de sólidos e estruturas: uma formulação posicional baseada no MEFâ€, Volume II, Departamento de Estruturas, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos.
Comission Permanente del Hormigón, EHE (2008), “Instrucción de Hormigón Estructural. Ministério de obras públicas e urbanismoâ€. Madrid, Espanha.
Dal Molin, D. C. C. (1988), “Fissuras em estruturas de concreto armado: análise das manifestações tÃpicas e levantamento de casos ocorridos no Estado do Rio Grande do Sulâ€, Dissertação de Mestrado em Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre.
Dyer, T. (2015), “A durabilidade do concretoâ€. Rio de Janeiro, Editora Ciência Moderna, pp. 536.
Ellingwood, B. R., Frangopol, D. M. (2016), “Introduction to the state of the art collection: risk-based lifecycle performance of structural systemsâ€, Journal of Structural Engineering, V.142, pp. 1.
Felix, E. F. (2016), “Desenvolvimento de software para a estimativa da profundidade de carbonatação, vida útil e captura de CO2 de estruturas de concreto empregando RNA’sâ€, Trabalho de conclusão de curso, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu.
Félix, E. F., Carrazedo, R., Possan, E. (2017), “Análise Paramétrica da carbonatação em estruturas de concreto armado via Redes Neurais Artificiaisâ€, Revista ALCONPAT, V.7, N. 3, pp. 302-316.
Geiker, M. R., Polder, R. B. (2016), “Experimental support for new electro active repair method for reinforced concreteâ€, Materials and Corrosion, V.67, pp. 600-606.
Graeff, A. G. (2007), “Avaliação experimental e modelagem dos efeitos estruturais da propagação da corrosão em elementos de concreto armadoâ€, Dissertação de Mestrado em Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre.
Kari, O. P., Puttonen, J., Skantz, E. (2014), “Reactive transport modelling of long-term carbonationâ€, Cement and Concrete Composites, V.52, pp. 42-53.
Köliö, A., Pakkala, T. A., Hohti, H., Laukkarinen, A., Lahdensivu, J., Mattila, J., Pentti, M. (2017), “The corrosion rate in reinforced concrete facades exposed to outdoor environmentâ€, Materials and Structures, V.50, pp. 1-16.
Mehta, P. K., Monteiro, P. J. M. (2014), “Concreto: microestrutura, propriedades e materiaisâ€. 2.ed. São Paulo, IBRACON, pp.751.
Neville, A. M. (1997), “Propriedades do concretoâ€, São Paulo: PINI, pp. 828.
Possan, E. (2010), “Modelagem da carbonatação e previsão de vida útil de estruturas de concreto em meio urbanoâ€, Tese de Doutorado em Engenharia, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre.
Rao, A. S., Lepech, M. D., Kiremidjian, A. S., Sun X. Y. (2017), “Simplified structural deterioration model for reinforced concrete bridge piers under cyclic loadingâ€, Structure and Infrastructure Engineering, V.13, pp. 55-66.
Smolczyk, H. G. (1969), “Written Discussionâ€, proceeding of the 1969 International Symposium on the Chemistry of Cement, Part III, v. II/4, pp. 369-384.
Stewart, M. G., Rosowsky, D. V. (1998), “Structural safety and serviceability of concrete bridges subject to corrosionâ€, Journal of Infrastructure Systems V.4, pp. 146-155.
Tuutti, K. (1982), “Corrosion of steel in concreteâ€. Stockholm, Swedish Cement and Concrete Research Institute.
Val, D. V., Melchers, R. E. (1997), “Reliability of deteriorating RC slab bridgesâ€, Journal of Structural Engineering, V.123, pp. 1638-1644.
Vesikari, E. (1988), “Service life prediction of concrete structures with regard to corrosion of reinforcementâ€. Technical Research Centre of Finland, report No. 553, Finland p. 53.
Vu, K. A. T., Stewart, M. G. (2000), “Structural reliability of concrete bridges including improved chloride-induced corrosion modelsâ€, Structural Safety, V.22, pp. 313-333.
Yanaka, M, Ghasemi, S. H., Nowak, A. (2016), “Reliability-based and life-cycle cost-oriented design recommendations for prestressed concrete bridge girdersâ€, Structural Concrete, V.17, pp. 836-847.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.