Investigação da resistência à compressão e da resistividade elétrica de concretos com diferentes tipos de cimento
Abstract
This work studied the influence of four Brazilian types of cement on the compressive
strength and electrical resistivity in samples of concrete. Three water/binder ratios were
analyzed, which led to the preparation of twelve different samples. The results show that the
types of cement has a direct influence on both tests. In general, compared to a reference, the
cements with additions of blast furnace slag and pozzolans reduced the strength, but
increased the electrical resistivity. It was also observed that the cement with pozzolan
showed the highest gain in strength with time, although it resulted in the lowest absolute
value. The results also indicated that the electrical resistivity increases with time and
decreases with higher water/binder ratios. A good correlation was found between the
mentioned tests with R2 ranging from 0.823 to 0.999.
Keywords: compressive strength, electrical resistivity, cements, blast fumace slag, pozzolan.
Downloads
References
Aït-Mokhtar, A., Belarbi, R., Benboudjema, F., Burlion, N., Capra, B., Carcassès, M., Colliat, J.-B., Cussigh, F., Deby, F., Jacquemot, F., Larrard, T. de, Lataste, J.-F., Bescop, P. Le, Pierre, M., Poyet, S., Rougeau, P., Rougelot, T., Sellier, A., Séménadisse, J., Torrenti, J. -M., Trabelsi, A., Turcry, P., Yanez-Godoy, H. (2013), “Experimental investigation of the variability of concrete durability properties”, Cement and Concrete Research, V.45, pp. 21-36. DOI: https://doi.org/10.1016/j.cemconres.2012.11.002
Alonso, C., Andrade C., González, J. A. (1988), “Relation between concrete resistivity and corrosion rate of the reinforcements in carbonated mortar made with several cement types”, Cement and Concrete Research, V.18, No. 5, pp. 687-698. DOI: https://doi.org/10.1016/0008-8846(88)90091-9
Andrade, C. (2004), “Calculation of initiation and propagation periods of service-life of reinforcements by using the electrical resistivity” in: International Symposium on Advances in Concrete through Science and Engineering, RILEM Symposium. Evanston: Illinois (USA). DOI: https://doi.org/10.1617/2912143586.003
Andrade, C., D’Andréa, R. (2011), “La resistividad eléctrica como parámetro de control del DOI: https://doi.org/10.21041/ra.v1i2.8
hormigón y de su durabilidad”, Revista ALCONPAT, V.1, No. 2, pp. 93-101.
Andrade, C., González, J. A., Feliú, S., Rodriguez, P., Ramírez, E., Alonso, C. (1996), “Some questions on the corrosion of steel in concrete – Part 1: When, how and how much steel corrodes”, Materials and Structures, V.29, No. 1, pp. 40-46. DOI: https://doi.org/10.1007/BF02486005
Baweja, D., Roper, H., Sirivivatnanon, V. (1997), “Quantitative descriptions of steel corrosion in concrete using resistivity and anodic polarisation data” in: V. M. Malhotra (Ed.), Proceedings 4th CANMET/ACI International Conference on Durability of Concrete, SP 170-3: pp. 41–63.
CCAA - Cement Concrete & Aggregates Australia. (2009), “Chloride Resistance of Concrete”, Report, June.
Crauss, C. (2010), “Penetração de cloretos em concretos com diferentes tipos de cimento submetidos a tratamento superficial”, Dissertação de Mestrado, Universidade Federal de Santa Maria – UFSM, Santa Maria, Rio Grande do Sul: p. 100.
Dinakar, P., Babu, K. G., Santhanam, M. (2007), “Corrosion behavior of blended cements in low and medium strength concretes”, Cement and Concrete Composites, V.29, No. 2, pp. 136–145. DOI: https://doi.org/10.1016/j.cemconcomp.2006.10.005
Gayarre, F. L., Pérez, C. L., López, M. A. S., Cabo, A. D. (2014), “The effect of curing conditions on the compressive strength of recycled aggregate concrete”, Construction and Building Materials, V.53, pp. 260–266. DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.112
Gesoglu, M., Ozbay, E. (2007), “Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems”, Materials and Structures, V.40, No. 9, pp. 923–937. DOI: https://doi.org/10.1617/s11527-007-9242-0
Ghods, P.; Isgor, O. B., Pour-Ghaz, M. (2007), “A practical method for calculating the corrosion rate of uniformly depassivated reinforcing bars in concrete”, Materials and Corrosion, V.58, No. 4, pp. 265-272. DOI: https://doi.org/10.1002/maco.200604010
Gowers, K. R., Millard, S. G. (1999), “Measurement of concrete resistivity for assessment of corrosion severity of steel using wenner technique”, ACI Materials Journal, V.96, M66, pp. 536–541. DOI: https://doi.org/10.14359/655
Gulikers, J. (2005), “Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement”, Materials and Corrosion, V.56, No. 6, pp. 393–403. DOI: https://doi.org/10.1002/maco.200403841
Halliday, D., Resnick, R. (1994), Fundamentos da física. Eletromagnetismo. 3.ed., v. 3, (Rio de Janeiro: LCT).
Helene, P. (2011), “Análise da resistência à compressão do concreto em estruturas acabadas com vistas à revisão da segurança estrutural”, Revista ALCONPAT, V.1, No. 1, pp. 67-92. DOI: https://doi.org/10.21041/ra.v1i1.7
Khatib, J., Hibbert, J. J. (2005), “Selected engineering properties of concrete incorporating slag and metakaolin”, Construction and Building Materials, V.19, No. 6, pp. 460–472. DOI: https://doi.org/10.1016/j.conbuildmat.2004.07.017
Klein, N. S. (2012), “El rol físico del água em mezclas de cemento Portland”, Tese de Doutorado, Universitat Politecnica de Catalunya, Barcelona.
Koenders, E. A. B., Pepe, M., Martinelli, E. (2014), “Compressive strength and hydration processes of concrete with recycled aggregates”, Cement and Concrete Research, V.56, pp. 203–212. DOI: https://doi.org/10.1016/j.cemconres.2013.11.012
Liu, Z., Zhang, Y., Liu, L., Jiang, Q. (2013), “An analytical model for determining the relative electrical resistivity of cement paste and C–S–H gel”, Construction and Building Materials, V.48, pp. 647-655. DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.020
Lubeck, A., Gastaldini, A. L. G., Barin, D. S., Siqueira, H. C. (2012), “Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag”, Cement and Concrete Composites, V.34, No. 3, pp. 392-399. DOI: https://doi.org/10.1016/j.cemconcomp.2011.11.017
Medeiros, M. H. F., Pereira, E., Helene, P. (2012), “Tratamento de superfície com silicato de sódio para concreto: penetração de cloretos e absorção de água”, Revista ALCONPAT, V.2, No. 3, pp. 157-169. DOI: https://doi.org/10.21041/ra.v2i3.34
Mehta, P. K., Monteiro, P. J. M. (2005), Concrete: microstructure, properties and materials. 3ª Ed., (McGraw-Hill Professional).
NBR 5733 (1991), “Cimento Portland de alta resistência inicial. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
NBR 5735 (1991), “Cimento Portland de alto-forno. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
NBR 5736 (1991), “Cimento Portland pozolânico. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
NBR 5737 (1992), “Cimentos Portland resistentes a sulfatos. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
NBR 5738 (2003), “Concreto - Procedimento para moldagem e cura de corpos-de-prova. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
NBR 5739 (2007), “Concreto - Ensaios de compressão de corpos-de-prova cilíndricos. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
NBR 11578 (1991), “Cimento Portland composto - Especificação. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
NBR 12655 (2006), “Concreto de cimento Portland - Preparo, controle e recebimento - Procedimento. Associação Brasileira de Normas Técnicas” – ABNT. Rio de Janeiro, Brasil.
Olsson, N.; Baroghel-Bouny, V.; Nilsson, L.; Thiery, M. (2013), “Non-saturated ion diffusion in concrete – A new approach to evaluate conductivity measurements”, Cement and Concrete Composites, V.40, pp. 40-47. DOI: https://doi.org/10.1016/j.cemconcomp.2013.04.001
Oner, A. E., Akyuz, S. (2007), “An experimental study on optimum usage of GGBS for the compressive strength of concrete”, Cement and Concrete Composites, V.29, No. 6, pp. 505–514. DOI: https://doi.org/10.1016/j.cemconcomp.2007.01.001
Pereira, V. G. A. (2001), “Avaliação do coeficiente de difusão de cloretos em concretos: influência do tipo de cimento, da relação a/c, da temperatura e do tempo de cura”, Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, p. 154.
Presuel-Moreno, F., Wu, Y.-Y., Liu, Y. (2013), “Effect of curing regime on concrete resistivity and aging factor over time”, Construction and Building Materials, V.48, pp. 874-882. DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.094
Saleem, M., Shameemt, M., Hussain, S. E., Maslehuddin, M. (1996), “Effect of moisture, chloride and sulphate contamination on the electrical resistivity Portland cement concrete”, Construction and Building Materials, V.10, No. 3, pp. 209-214. DOI: https://doi.org/10.1016/0950-0618(95)00078-X
Santor, M. S., Gastaldini, A. L. G., Crauss, C., dos Santos, G. T., Rossini, F. C. (2012), “Influência de materiais de proteção na resistividade elétrica do concreto”, Revista ALCONPAT, V.2, No. 1, pp. 47-57. DOI: https://doi.org/10.21041/ra.v2i1.26
Silva, B. A. (2009), “Análise da influência do tipo de cura na resistência à compressão de corpos de prova de concreto”, Trabalho de Graduação, Instituto Tecnológico de Aeronáutica – ITA, São José dos Campos, São Paulo, p. 48.
Solís, R. G., Moreno, E. I., Arjona, E. (2012), “Resistencia de concreto con agregado de alta absorción y baja relación a/c”, Revista ALCONPAT, V.2, No. 1, pp. 21-29. DOI: https://doi.org/10.21041/ra.v2i1.23
Taylor, H. F. W. (1990), Cement chemistry (London: Academic Press).
Tessari, R. (2001), “Estudo da capacidade de proteção de alguns tipos de cimento nacionais, em relação à corrosão de armaduras sob a ação de íons cloreto”, Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, p. 114.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.