Low impact fiber reinforced material composite
Abstract
Low impact fiber reinforced material composite
ABSTRACT
This article investigates the mechanical behavior of fiber-reinforced cementitious composites using moderate to high contents of fly ash (FA) as a replacement for cement; the goal is to create primary building elements with low environmental impact. The experimental results showed that the compressive strength, modulus of elasticity, and post-cracking flexural strength for specimens with w/cm = 0.60 and 20% FA substitution increased with respect to the control. Moreover, the specimens with high FA substitutions had significantly lower mechanical strength values and elastic modulus values. The results indicate that it is feasible to use fiber-reinforced concrete composites as an alternative for low-environmental impact primary construction.
Keywords: fiber; cementitous; composites; fly ash, impact material.
Downloads
References
ACI Manual of Concrete Practice, Part 5, (1998). State of-the-Art on Fiber Reinforced Concrete. ACI Committee 544.
Agopyan, V., Savastano, H., John, V. M., Cincotto, M. A. (2005). Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement and Concrete Composites, 27(5), 527-536. doi:10.1016/j.cemconcomp.2004.09.004.
Alawar, A., Hamed, A. M., Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 40(7), 601-606. doi:10.1016/j.compositesb.2009.04.018.
Alfonso, C. (2003). La vivienda del siglo XXI: edificación sostenible. Ambiental: Revista del Ministerio de Medio Ambiente, (23), 22-28.
Alvarez Anton, L., DÃaz, J. (2014). Integration of life cycle assesment in a BIM environment. Procedia Enginnering, 85, 26-32.
Aziz, M. A., Lee, S. L. (1984). Concrete Reinforced with Natural Fibers. Surrey R. N., Ed. New Reinforced Concretes, Oxford: University Press, 106-140.
Bernal, S., De Gutierrez, R., Delvasto, S., Rodriguez, E. (2010). Performance of an alkali-activated slag concrete reinforced with eteel fibers. Construction and building Materials, 24, 208-214. doi:10.1016/j.conbuildmat.2007.10.027
Bilba, K., Arsene, M. (2008). Silane treatment of bagasse fiber for reinforcement of cementitious composites. Composites Part A: Applied Science and Manufacturing, 39(9), 1488-1495. doi:10.1016/j.compositesa.2008.05.013.
Claramunt, J., Ardanuy, M., GarcÃa-Hortal, J. A., Filho, R. D. T. (2011). The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, 33(5), 586-595. doi:10.1016/j.cemconcomp.2011.03.003.
De Gutiérrez, R. M., DÃaz, L. N., Delvasto, S. (2005). Effect of pozzolans on the performance of fiber-reinforced mortars. Cement and Concrete Composites, 27(5), 593-598. doi:10.1016/j.cemconcomp.2004.09.010.
Ding Grace, K. C. (2008). Sustainable construction – The role of environmental assessment tools. Journal of Environmental Management, 86, 451-464.
Durán-Herrera, A., Juárez, C. A., Valdez, P., Bentz, D. P. (2011). Evaluation of sustainable high-volume fly ash concretes. Cement Concrete Composites, (33)1, 39-45.
Georgiou Antroula, V., Pantazopoulou Stavroula, J. (2016). Effect of fiber length and surface characteristics on the mechanical properties of cementitious composites. Construction and Building Materials, 125, 1216-1228. http://dx.doi.org/10.1016/j.conbuildmat.2016.09.009
Gudes, S. (2016). The use of life cycle techniques in the assessment of sustainability. Procedia – Social and Behavioral Sciences, 216, 919-922.
Jarabo, R., Monte, M. C., Blanco, A., Negro, C., Tijero, J. (2012). Characterisation of agricultural residues used as a source of fibres for fibre-cement production. Industrial Crops and Products, 36(1):14–21. doi:10.1016/j.indcrop.2011.07.029.
John, V. M. (2005). Durability of slag mortar reinforced with coconut fibre. Cement and Concrete Composites, 27, 565-574. doi:10.1016/j.cemconcomp.2004.09.007.
Juárez C. A., Valdez P. L., Durán A. (2004). Fibras Naturales de Lechuguilla como Refuerzo en Materiales de Construcción. Revista IngenierÃa de Construcción. Santiago: Escuela de IngenierÃa Pontificia. Universidad Católica de Chile, 19 (2): 83-92.
Juárez C., Durán A., Valdez P., Fajardo G., (2007). Performance of “Agave Lecheguilla†natural fiber in Portland cement composites exposed to severe environment conditions. Building and Environment, 42 (3), 1151-1157.
Kriker, A., Bali, A., Debicki, G., Bouziane, M., Chabannet, M. (2008). Durability of date palm fibres and their use as reinforcement in hot dry climates. Cement and Concrete Composites, 30(7), 639-648. doi:10.1016/j.cemconcomp.2007.11.006.
Malhotra, V. M., (2001). High-performance, high-volume fly ash concrete for sustainability. P.-C Aïtcin Symposium on the Evolution of Concrete Technology, Sherbrooke: Université de Sherbrooke, 19-74.
Mineral Commodity Summaries. (2015). U.S. Geological Survel. Virginia, USA.
Mohr, B. J., Biernacki, J. J., Kurtis, K. E. (2007). Supplementary cementitious materials for mitigating degradation of kraft pulp fiber-cement composites. Cement and Concrete Research, 37(11), 1531-1543. doi:10.1016/j.cemconres.2007.08.001.
Pacheco-Torgal, F., Jalali, S. (2011). Cementitious building materials reinforced with vegetable fibres: A review. Construction and Building Materials, 25(2): 575–581, doi:10.1016/j.conbuildmat.2010.07.024.
Patrone, A., GarcÃa, B., Nigro E. (2005). Muro monolÃtico con suelo estabilizado. Construcción con Tierra1, Buenos Aires: Universidad de Buenos Aires, (1), 60-65.
Pavon, E., Etxeberria, M., Martinez, I. (2011). Properties of recycled aggregates concrete using active and inert addictions. Revista de la Construcción [online], 10(3), 4-15, doi.org/10.4067/S0718-915X2011000300002.
Population Reference Bureau (2014), World population data sheet. (n.d.) Retrieved from http://www.prb.org/pdf14/2014-world-population-data-sheet_eng.pdf. [visited 19.10.14].
Roux, R. (2010). Los bloques de tierra comprimida en zonas húmedas, méxico: plaza y valdés.
Salas, J., Oteiza, I. (2008). Los materiales de construcción ante las ingentes necesidades de hábitat en el tercer mundo (Carencias de una investigación necesaria). II Jornada de Investigación en Construcción. (p. 463), Madrid: Instituto de Ciencias de la Construcción Eduardo Torroja. Consejo Superior de Investigaciones CientÃficas.
Sahib Banyhussan, Q., Yildirim, G., Bayraktar, E., Demirhan, S., Sahmaran, M. (2016). Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content, Construction and Building Materials, 125, 41-52. http://dx.doi.org/10.1016/j.conbuildmat.2016.08.020
Savastano, H., Warden, P. G., Coutts, R. S. P. (2005). Microstructure and mechanical properties of waste fibre–cement composites. Cement and Concrete Composites, 27(5), 583-592. doi:10.1016/j.cemconcomp.2004.09.009.
Savastano, H., Warden, P., Coutts, R. S. (2003). Potential of alternative fibre cements as building materials for developing areas. Cement and Concrete Composites, 25(6), 585-592. doi:10.1016/S0958-9465(02)00071-9.
Sedan, D., Pagnoux, C., Smith, A., Chotard, T. (2008). Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. Journal of the European Ceramic Society, 28(1), 183-192. doi:10.1016/j.jeurceramsoc.2007.05.019.
Shen, D., Shi, X., Zhi, S., Duan, X., Zhang, J. (2016). Relationship between tensile Young´s modulus and strength of fly ash high strength concrete at early age. Construction and Building materials,123, 317-326. http://dx.doi.org/10.1016/j.conbuildmat.2016.06.145
Siddique, R. (2004). Performance characteristics of high-volume Class F fly ash concrete. Cement and Concrete Research, 34,487-493.
Stancato, A. C., Burke, A. K., Beraldo, A. L. (2005). Mechanism of a vegetable waste composite with polymer-modified cement (VWCPMC). Cement and Concrete Composites, 27(5), 599-603. doi:10.1016/j.cemconcomp.2004.09.011.
Tonoli, G. H. D., Santos, S. F., Joaquim, A. P., Savastano, H. (2010). Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Construction and Building Materials, 24(2), 193-201. doi:10.1016/j.conbuildmat.2007.11.018.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.